1、第第二二单元单元分析单元单元分析 圆柱和圆锥圆柱和圆锥 一、一、教材分析教材分析: : 圆柱和圆锥是在圆的知识与长方体、 正方体知识的基础上编排的, 圆柱和圆锥都是平面 与曲面围成的立体图形, 学生对几何体的认识从表面是平面到表面含有曲面, 是认识过程中 的一次飞跃, 也是学生观察和认识客观世界的重要突破。 学生在过去的学习中已经积累了十 分丰富的图形与几何的学习经验, 特别是圆面积的计算方法, 长方体和正方体的特征表面积 和体积计算方法等知识的探索过程和由此获得的学习经验和方法都为学习圆柱和圆锥的有 关知识奠定了坚实的基础。 本单元主要是认识圆柱和圆锥的特征, 理解圆柱侧面积和表面积 的含义
2、及计算方法, 探索并应用圆柱和圆锥的体积计算公式解决问题, 扩大学生认识几何形 体的范围,丰富对形体的认识,进一步发展学生的演绎推理能力和合情推理能力,发展空间 观念和思维能力,培养转化能力和推理能力,发展空间观念和思维能力,获得良好的数学素 养。 二、二、教学目标:教学目标: 1. 使学生结合具体实例认识圆柱和圆锥,知道圆柱和圆锥的底面、侧面高的含义,掌握它 们的基本特征。 2. 使学生经历观察、操作、比较、分析、估计、类比、归纳等活动过程,探索并掌握圆柱 侧面积、表面积的计算方法,以及圆柱和圆锥的体积公式,解决有关的实际问题。 3. 使学生在探索圆柱和圆锥等有关知识的过程中,进一步积累图形
3、与几何的学习经验,培 养初步的比较、分析、综合、抽象、概括,以及简单的判断、推理嗯呢管理,发展数学思考, 增强空间观念。 4. 使学生进一步体会数学与生活实际的联系,感受立体图形学习的价值,提高数学学习的 兴趣和学好数学的信心。 三、教三、教学重点和难点:学重点和难点: 教学重点:认识圆柱、圆锥的特征,探索并掌握圆柱、圆锥体积的计算公式。 教学难点:掌握探索圆柱的侧面积和表面积计算方法,探索并发现圆柱和圆锥的体积公式。 四、四、课时安排:课时安排:1010 课时课时 圆柱、圆锥的认识 1 课时 圆柱的侧面积和表面积 2 课时 圆柱的体积 3 课时 圆锥的体积 2 课时 整理与练习 2 课时 邗
4、江区数学实验校际联盟(邗江区实验学校)集体备课预案 主备人主备人: 审核人:审核人: 总第总第 课时课时 课课 题题 圆柱和圆锥的认识圆柱和圆锥的认识 授课时间授课时间 教教 学学 内内 容容 教材第 9-10 页例 1 和练一练、练习二第 1-3 题。 教教 学学 目目 标标 1使学生在观察、操作、交流等活动中感知和发现圆柱、圆锥的特征,知道圆柱和圆锥的底 面、侧面和高 2使学生在活动中进一步积累认识立体图形的学习经验,增强空间观念,发展数学思考。 3使学生进一步体验立体图形与生活的关系,感受立体图形的学习价值,提高学习数学的兴 趣和学好数学的信心。 重重 点点 难难 点点 探索圆柱和圆锥的
5、特征,认识高。 探索圆柱和圆锥的特征,认识高;知道平面图形和立体图形之间的关系,认识立体图。 教教 具具 学学 具具 课件、圆柱和圆锥实物。 教 学 过 程 设 计教 学 过 程 设 计 教 学 流 程教 学 流 程 个 性 化 修 改个 性 化 修 改 一、 创设 情境 激发 兴趣 1教师出示一组相关的几何体的实物图,其中有长方 体、正方体形状的,也有圆柱和圆锥形状的,提问:上面 哪些物体的形状是圆柱体? 哪些是圆锥体?哪些不是?为 什么?在日常生活中,你见过哪些物体是圆柱体和圆锥 体? 2 揭示课题,板书:圆柱和圆锥 教师说明:我们所学的圆柱和圆锥都是直直的直圆柱 和直圆锥。 二、 自主
6、探究 体验 感悟 (一)认识圆柱的特征 1分组活动,每人拿一个圆柱,摸一摸量一量,比一 比,你发现了什么? 2互相交流,什么感觉。启发学生动手实验: (1)用手平摸上下底,有什么特点 (2)用笔画一画,上下底面积有什么特点?你怎样证 明这两个底面大小的关系? (3)用双手摸一摸侧面,你发现了什么? 3讨论、交流、总结。 (1)教师根据学生的回答并板书。 底面 2 个平面 完全相同 圆 圆柱 侧面 1 个 曲面 4圆柱的高。 出示高、低不同的两个圆柱。 (1)直尺和三角板演示圆柱的高 使学生明确:圆柱 两个底面之间的距离叫做高。 (2)让学生找一找圆柱的高,然后教师出示圆柱的立体 图形,说明:两
7、个底面之间的距离叫做圆柱的高。教师 先画出一条高,再让学生画高,教师提问:刚才大家从 不同位置画了高,说明高有多少条? (二)圆锥形状的认识。 1.引导观察 (1)请学生从课前准备的物体中挑出圆锥体学具,请 大家看一看,摸一摸,与圆柱比一比,你看到了什么? 摸到了什么?说给同桌听。 (2)让一生上来边指边说,回答后师板书: 顶点:1 个 侧面(曲面) 面:2 个 底面(圆) (3)师指导透视图,示范画。 画透视图的时候应该先画一个椭圆,然后在椭圆的正 上方画上顶点,最后把顶点与底面连起来。 2. 圆锥高的认识。 (1)高在哪里?师指母线,问:这条是不是圆锥的高? 为什么不是?你能举个例子驳倒他
8、吗? (2)你能用自己的话说说什么是圆锥的高? (3)圆柱的高有无数条,圆锥的高有几条?为什么? (教师在黑板上作高,板书:1 条) (4) 在下发的练习纸上的立体图上画高, 标上字母 h。 三、 延伸 拓展 实践 应用 1做“练一练” ,说出下列物体的形状哪些是圆柱体, 哪些是圆锥体?引导学生说说选择的理由。 2找一个圆柱形和圆锥形的物体,指出它的各部分名 称。 3.练习二 1、2 两题。 四、 回顾 交流 布置 作业 1.这节课你认识了什么?有什么收获? 2.布置课后作业:练习二第 3 题。 3.完成补充习题第 6-7 页。 板书板书 设计设计 教教 后后 记记 邗江区数学实验校际联盟(邗
9、江区实验学校)集体备课预案 主备人主备人: 审核人:审核人: 总第总第 课时课时 课课 题题 圆柱的表面积圆柱的表面积 授课时间授课时间 教教 学学 内内 容容 教材第 11-12 例 2、例 3 和练一练、练习二第 4-5 题。 教教 学学 目目 标标 1.使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。 2. 进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。 3让学生进一步增强数学在生活中的体验,培养热爱数学、学好学生的兴趣。 重重 点点 难难 点点 使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。 教教 具具 学学 具具
10、课件、圆柱形的物体、圆柱侧面的展开图。 教 学 过 程 设 计教 学 过 程 设 计 教 学 流 程教 学 流 程 个 性 化 修 改个 性 化 修 改 一、 创设 情境 激发 兴趣 复习回忆: 1指名学生说出圆柱的特征 2口头回答下面问题 (1)一个圆形花池,直径是 5 米,周长是多少? (2)长方形的面积怎样计算? 学生回答后,板书:长方形的面积长宽 二、 自主 探究 体验 感悟 (一)认识侧面积的意义和计算方法。 1出示例 2 的情景图,引导学生思考:商标纸的面积大 约是多少平方厘米,就是求圆柱的什么? 2学生拿出课前准备的类似例 2 的物体,摸一摸,看一 看,理解得出商标纸的面积就是求
11、圆柱的侧面积。 师板书:圆柱的侧面积 3操作实验,认识侧面积的计算方法。 (1)请学生先想一想,如果把圆柱侧面的商标纸沿高剪 开再展开,它会是什么形状? (2)学生拿出贴有商标纸的学具饮料罐,沿着它的一条 高剪开,然后展开,观察是什么形状。 (3)引导生观察,进一步思考得到的商标纸的长和宽跟 圆柱体有什么关系呢?如何计算商标纸的面积? (4)概括提升:根据它们之间的这种关系,圆柱的侧面 积应该怎样算?为什么? 师板书: 圆柱的侧面积=底面周长 高 长方形的面积 长 宽 4发散提高:想一想,生活中还有哪些情况是求圆柱的 侧面积? 5独立完成“练一练”第 1 题 (二)认识表面积的意义和计算方法。
12、 1出示例 3。让学生对照直观图,说说圆柱的侧面和底 面的位置,同座互相用学具指一指。 2思考:沿高展开后得到的长方形的长和宽分别是多少 厘米?两个底面分别是多大的圆? 3要求:闭上眼睛想一想,圆柱的展开图是什么形状? 4试一试,在书中的方格纸上画出这个圆柱的展开图, 再将学生所画的展开图进行交流与展示。 5观察展开图,想一想圆柱表面有哪些部分组成? 6教师小结,指出圆柱的侧面积与两个底面积的和,叫 做圆柱的表面积。 师板书:圆柱的表面积。 7引导学生概括:怎样计算圆柱的表面积?圆柱的表面 积与侧面积有什么关系? 师板书:圆柱的表面积=侧面积+两个底面积 8学生在小组里讨论,然后算一算这个圆柱
13、的表面积。 教师注意指导学生的答题格式。 三、 延伸 拓展 实践 应用 1完成“练一练”第 2 题。 可以先让学生分别算出有关圆柱的侧面积和底面积,再 算出侧面积与两个底面积大和。 2完成练习二第 4 题。 注意指导学生思考问题要求的是圆柱的哪个面。 3完成练习二第 5 题。 先让学生说说用铁皮做油桶时,需要做圆柱的哪几个 面? 4.一个圆柱底面直径是 2 分米,把它的侧面展开是一个 正方形,这个圆柱的高是多少分米? 5.一个圆柱的侧面展开是一个正方形,边长 9.42 厘米, 这个圆柱的底面直径是多少? 6.一个圆柱的侧面积是 18.84 平方厘米,它的高是 3 厘 米。它的底面周长是多少厘米
14、?表面积是多少? 7.一个高为 6.28 的圆柱形零件, 它的侧面展开正好是 一个正方形,这个零件的表面积是多少? 8.一个长方形长 8 厘米,宽 4 厘米,以其长为轴旋转一 周,得到一个立体图形。这个立体图形的表面积是多少 平方厘米? 9.一个没有盖的圆柱形铁皮水桶,高是 40 厘米,底面直 径是 40 厘米。做这个水桶至少需用多少平方厘米的铁 皮? 分析:本题已知什么,要求什么,怎样解答,该注意什 么? 四、 回顾 交流 布置 作业 1 今天这节课你学到了哪些知识?有什么收获?还有哪 些不清楚的问题? 2 生活中的圆柱体表面都是一个侧面加两个底面吗?哪 些不是?又该怎样计算它们的表面积呢?
15、 完成补充习题第 8-9 页。 板书板书 设计设计 教教 后后 记记 邗江区数学实验校际联盟(邗江区实验学校)集体备课预案 主备人主备人: 审核人:审核人: 总第总第 课时课时 课课 题题 圆柱的表面积练习课圆柱的表面积练习课 授课时间授课时间 教教 学学 内内 容容 练习二 6-12、思考题。 教教 学学 目目 标标 1.使学生理解和掌握圆柱侧面积和表面积的计算方法,能根据实际生活情况解决有关圆柱表面 积计算的实际问题。 2.在解决实际问题中,加深理解表面积计算方法,发展学生的空间观念。 3.让学生进一步密切数学与生活中联系,能够初步学以致用。 重重 点点 难难 点点 能根据实际生活情况解决
16、有关圆柱表面积计算的实际问题。 教教 具具 学学 具具 课件 教 学 过 程 设 计教 学 过 程 设 计 教 学 流 程教 学 流 程 个 性 化 修 改个 性 化 修 改 一、 创设 情境 激发 兴趣 系统整理 1 指名学生说出圆柱的侧面积展开图和圆柱的表面积展 开图的形状 2根据展开图,结合教具,总结出底面积、侧面积、表 面积的计算方法。 3教师归纳,整理成板书。 底面积=r2 侧面积=底面周长高 表面积=侧面积+底面积2 二、 自主 探究 体验 感悟 基本练习 1出示练习二第 6 题表格。 (1)引导学生思考:先填什么?再填什么?最后填什 么?然后独立练习。 (2)反馈、校对、订正。
17、2完成练习二的第 710 题。 (1)第 7 题。 引导生分析需要白铁皮的面积就是求圆柱的什么面? (侧面积)要求学生正确选用公式,认真仔细地计算 (2)第 8 题。 借助示意图引导学生理解题意,弄清灯笼所需要的彩纸 分别要计算圆柱的哪几部分? (3)第 9 题。 让学生独立思考,说出解答这题要注意什么?师提示: 注意题目中隐含的“无盖”这个条件。同时,对“结果 保留整十平方分米”作说明。 (4)第 10 题。 具体引导博士帽的结构,使学生认识到博士帽都是由一 个无底无盖的圆柱和一个边长 30 厘米的正方形, 需要分 别计算侧面积和正方形的面积。 三、 延伸 拓展 实践 应用 灵活应用灵活应用
18、 1思考:生活中看到过哪些圆柱?它们都有哪些面?如 何计算制作圆柱所需要的材料?你能分类整理吗? 分小组,合作完成分类表。 类别 一个侧 面 一个底 面和一 个侧面 两个底 面和一 个侧面 其他 情况 物体 举例 2.练习二第 11 题。 启发学生思考塑料花分布在花柱的哪些面?要求花柱上 有多少朵花应先求哪些面的面积?(侧面和底面) 3.练习二第 12 题。 联系生活常识,先理解需要油漆的是哪部分?具体的计 算方法是什么?独立练习。 3把 4 个棱长为 2 分米的正方体拼成长方体,拼成的长 方体的表面积可能是( )平方分米,也可 能是( )平方分米。 4 用铁皮制作一个圆柱形烟囱, 要求底面直
19、径是 3 分米, 高是 15 分米,制作这个烟囱至少需要铁皮多少平方分 米?(接头处不计) 5用铁皮制作一个圆柱形汽油桶,要求底面半径是 4 分 米,高是 12 分米,制作 10 个这样的油桶至少需要铁皮 多少平方分米?(接头处不计) 6请学生在作业纸上绘制一个无盖圆柱形水桶的示意 图,并根据实际情况标出有关数据,并根据自己标出的 数据计算出这个水桶需要多少平方分米的铁皮。 让学生根据以上练习小结实际生活中求圆柱体表面积的 几种可能 四、 回顾 交流 布置 作业 1.今天这节课你学到了哪些知识?解决圆柱表面积的实 际问题要注意什么?(根据实际情况灵活计算) 2.解决思考题: 3.补充习题第 1
20、0-11 页。 板书板书 设计设计 圆柱体的表面积 侧面展开是长方形(或正方形) 侧面积=底面周长高 表面积=侧面积底面积2 教教 后后 记记 邗江区数学实验校际联盟(邗江区实验学校)集体备课预案 主备人主备人: 审核人:审核人: 总第总第 课时课时 课课 题题 圆柱的体积圆柱的体积 授课时间授课时间 教教 学学 内内 容容 教科书第 15-16 页例 4、试一试和练一练,完成练习三第 1-2 题。 补充习题第 12 页。 教教 学学 目目 标标 1使学生结合具体情境,探索并掌握圆柱体积的计算方法,初步学会应用公式计算圆柱的体 积,并解决相关的实际问题。 2使学生在观察、猜想、验证、归纳等数学
21、活动过程中,进一步感受转化思想,积累数学活 动的经验,培养应用已有知识探究和解决新问题的能力;培养观察、比较和分析、概括等思维 能力,进一步发展空间观念。 3.使学生主动参与学习活动,培养乐于思考、善于思考的品质;进一步体会探索和获得新知的 成功过程,提高学习数学的兴趣和学好数学的自信心。 重重 点点 难难 点点 重点:探索并掌握圆柱的体积公式。 难点:理解圆柱体积计算公式的推导过程。 教教 具具 学学 具具 教师准备:课件 圆柱体转化成长方体的学具。 教 学 过 程 设 计教 学 过 程 设 计 教 学 流 程教 学 流 程 个 性 化 修 改个 性 化 修 改 一、 创设 情境 激发 兴趣
22、 谈话:前几节课我们已经认识了圆柱体,学会了计算 圆柱的侧面积、底面积和表面积,今天这节课我们继续 来研究圆柱的体积。 同学们回忆一下, 什么叫体积? (指 名回答,生:物体所占空间的大小叫做体积。 )我们学会 计算哪些立体图形的体积呢?(指名学生回答,教师演 示 。板书:长方体/正方体的体积=底面积高) 1.呈现长方体、正方体和圆柱的直观图。 2.揭题:老师为大家准备了长方体、正方体、圆柱。其 中我们。怎样计算呢?今天我们就一起来探索圆柱体积 的计算方法(板书课题:圆柱的体积) 3.教师:在研究这个问题之前,我们先来复习一下,圆 的面积是怎样计算的呢?圆的面积计算公式是怎样推导 出来的?(引
23、导学生说出:把一个圆,平均分成若干个 扇形,拼成一个近似长方形,分的份数越多,越接近长 方形。长方形的长相当于圆周长的一半,宽相当于圆的 半径。 )根据学生的叙述,教师课件演示 二、 观察比较,建立猜想 自主 探究 体验 感悟 出示例 4,指名读题,明确底面积和高分别相等。 1.提问:长方体和正方体的体积相等吗?为什么? (集体交流得出:长方体和正方体的底面积相等,高也 相等;长方体和正方体的体积都等于底面积乘高,所以 体积相等。 ) 2、 猜一猜, 圆柱的体积与长方体、 正方体的体积相等吗? 把你的想法在小组里交流。 3、教师:那么今天我们要研究的圆柱的体积,能不能也 像刚才圆的面积公式推导
24、过程一样,转化成我们学过的 立体图形,推导出计算圆柱体积的公式呢? (二) 、实验操作,验证猜想。 1.学生小组讨论、交流。 (1)你准备把圆柱体转化成什 么立体图形? (2)你是怎样转化成这个立体图形的? (3)转化以后的立体图形和圆柱体之间有什么关系? 2.推导圆柱体积公式。 学生交流,教师动画演示。 (1)把圆柱体转化成长方体。 (2)怎样转化成长方体呢?(指名叙述:把圆柱体底面 分成平均分成若干个扇形(例如分成 16 份)然后把圆柱 切开,拼成一个近似长方体。 )你会操作吗?(学生演示 教具) (3)启发:如果把圆柱底面平均分的分数再多一些,比 如 32 份、 64 份切开后拼成的物体
25、会有什么变化呢? 同学们可以现在头脑中想象一下。 课件演示把圆柱的底面平均分成 32 份、64 份 切开后依 次拼一拼。 提问:和你想象的一样吗?拼成的物体有什么变化?说 明了什么? 小结:底面扇形平均分的份数越多,拼成的立体图形就 越接近长方体。这样无限地分下去,就能拼成长方体 (4)教师:这个长方体与圆柱体比较一下,什么变了? 什么没变?(生:形状变了,体积大小没变。 ) (5)观察比较,推导圆柱体积公式。 讨论:切拼成的长方体与圆柱体有什么关系?(学生 回答:切拼成的长方体的体积相当于圆柱的体积,长方 体的底面积相当于圆柱体的底面积,长方体的高相当于 圆柱体 的高。教师根据学生回答演示课
26、件。 ) 教师: 圆柱的体积怎样计算?用字母公式, 怎样表示? 板书:圆柱的体积 = 底面积高 V = S h 三、 延伸 拓展 实践 应用 1.完成“试一试” 。指名读题,理解题意。学生独立完成, 集体订正。 提问: 计算这个零件的体积应该先计算什么? 再怎么算? 2.完成练习三第 1 题。提问:怎么计算圆柱体体积? 3.完成练习三第 2 题。师:计算电饭煲的容积为什么要 从里面量直径和高,再独立完成解答。 4. 一根圆柱形零件,底面周长是12.56厘米,长是10厘 米,它的体积是多少? 要求圆柱体积, 要知道什么条件? 5.智慧屋:已知一个圆柱的侧面积为 37.68 平方厘米, 底面半径为
27、 3 厘米,求这个圆柱的体积。 根据侧面积=底面周长乘高,先求出底面周长和高,再求 出底面积,然后根据底面积乘高求出体积。 四、 回顾 交流 布置 作业 回顾圆柱体积公式的探索过程,你知道了什么?有什么 体会?把你的想法在小组里交流。 小结:推导圆柱体积公式的过程让我们知道,可以利用 长方体体积公式推导出圆柱体积公式。推导时可以联系 圆转化成长方形的方法,把圆柱切开拼一拼,转化成长 方体,发现拼成的长方体和圆柱体积相等,得出圆柱体 积的计算方法和长方体、正方体一样,也用底面积乘高。 作业:完成补充习题第 12 页。 板书板书 设计设计 圆柱的体积圆柱的体积 长方体/正方体体积=底面积高 圆柱的
28、体积=底面积高 教教 后后 记记 邗江区数学实验校际联盟(邗江区实验学校)集体备课预案 主备人主备人: 审核人:审核人: 总第总第 课时课时 课课 题题 圆柱的体积练习圆柱的体积练习 授课时间授课时间 教教 学学 内内 容容 完成教科书练习三第 3-9 题, 补充习题第 13 页。 教教 学学 目目 标标 1.熟练掌握圆柱体体积的计算方法,能正确计算圆柱形容器的容积。 2.进一步提高学生空间想象能力和解决实际问题的能力。 3.培养学生良好的计算习惯和审题习惯。 重重 点点 难难 点点 重点:熟练计算圆柱体的体积。 难点:根据实际情况灵活计算。 教教 具具 学学 具具 教师准备:课件 圆柱体转化
29、成长方体的学具。 教 学 过 程 设 计教 学 过 程 设 计 教 学 流 程教 学 流 程 个 性 化 修 改个 性 化 修 改 一、 创设 情境 激发 兴趣 1.回忆:怎样求圆柱体的体积?是如何推导出来的? 2.过程再现: (1)课件出示动态过程,学生说说自己的发现。 (通过 此过程,将长方体与圆柱的体积、高、底面积对比,加 深对公式的理解) 。 ( 2) 长 方 体 的 底 面 积 为 等 于 圆 柱 的 ( ) 。 长方体的高等于圆柱的 ( ) 。 板书:圆柱的体积=底面积高 二、 自主 探究 体验 感悟 1.计算下列圆柱的体积。 (1)底面积 0.9 平方米 ,高 1.5 米。 (2
30、)底面直径 4 厘米,高 5 厘米。 (3)底面半径 3 分米,高 2 分米。 (4)底面周长 25.12 分米,高 2 分米。 2.讨论练习三第 4 题 (1)让学生看图猜猜哪杯里的饮料多? (2)学生算一算,验证自己的猜想是否正确。 3.完成练习三第 5 题 (1)读题,为什么强调“从里面量”?(要求茶桶装多 少水是求茶桶的容积) (2)说明:容积计算与体积计算相同,只是容积要从里 面量出数据。 (3)列式计算,交流。 4.完成练习三第 6 题 (1)出示用纸卷成的 50 枚 1 元硬币的圆柱形形状图, 引导学生观察图中的条件。 (2)思考:可以怎样计算 1 元硬币的体积?有什么不同 的方
31、法? (3)交流:可以先计算 50 枚 1 元硬币组成的圆柱的体 积,再算 1 枚的体积;也可以先算出 1 枚的厚度,再用 底面积乘高。 (4) 学生根据数据计算。 5.完成练习三第 7 题 (1)学生准备一张长方形硬纸板转一转,想象一下转成 的立体图形的形状。 (2)电脑演示 (3)那个圆柱的体积大,先估一估,再计算,你发现了 什么? 练习: 有一块长 12.56 分米,宽 6.28 分米的长方形铁皮, 用它作成一个圆柱体的侧面.要使水桶的容积最大,水桶 的底面积是多少平方分米? 6.完成练习三第 8 题 理解题意,根据底面周长先求出半径,求出圆面积,再 求出罐头的容积。 7.课后完成第 9
32、 题。 三、 延伸 拓展 实践 应用 1,一个圆柱形水池,直径 10 米,深 1 米。 (1)这个水池 占地面积是多少平方米?(2)建成这个水池,共需挖土 多少立方米?(3)在池的内部抹一层水泥,抹水泥的面 积是多少平方米? 2.一个圆柱的底面积扩大 2 倍, 高不变, 体积扩大 ( ) 倍;一个圆柱的底面半径扩大 2 倍,高不变,体积扩大 ( )倍;一个圆柱的底面周长扩大 2 倍,高也扩大 2 倍,体积扩大( )倍。 3.有一种长 3m、横截面直径是 8 的圆钢。每立方分米 的钢重 7.8 千克,则有 4 根这样的圆钢共重多少千克? 4.将一个棱长 4 分米的正方体加工成最大的圆柱。求圆 柱
33、的体积。 5.有一根长 6 分米的方木,横截面是边长 2 分米的正方 形,将它加工成体积最大的圆柱,求圆柱的体积。 6.把一个铅球完全放入一个底面半径是8分米的水桶中, 水面高度由 4 分米上升至 6 分米,那么这个铅球的体积 是多少? 四、 回顾 交流 布置 作业 你有什么体会和疑问?计算体积与容积方法一样吗?要 注意什么? 作业: 补充习题第 13 页 板书板书 设计设计 圆柱的体积练习 底面积=r2 侧面积=底面周长高 表面积=侧面积+底面积2 圆柱的体积=底面积高 教教 后后 记记 邗江区数学实验校际联盟(邗江区实验学校)集体备课预案 主备人主备人: 审核人:审核人: 总第总第 课时课
34、时 课课 题题 圆柱的表面积与体积练习圆柱的表面积与体积练习 授课时间授课时间 教教 学学 内内 容容 完成教科书练习二第 10-16 题。 补充习题第 14-15 页。 教教 学学 目目 标标 1通过练习,让学生在解决简单的实际问题的过程中,进一步理解和掌握圆柱的体积、表面 积计算方法。 2使学生进一步增强运用已有知识经验探索并解决问题的意识,体验探索学习的乐趣。 重重 点点 难难 点点 使学生在解决问题活动中进一步理解圆柱的表面积与体积的计算方法,培养学生初步的分析、 比较、抽象、概括能力。 教教 具具 学学 具具 教师准备:课件 教 学 过 程 设 计教 学 过 程 设 计 教 学 流
35、程教 学 流 程 个 性 化 修 改个 性 化 修 改 一、 创设 情境 激发 兴趣 1.回顾复习:介绍上一课学习的关于圆柱的知识。圆柱 的体积如何计算;圆柱有哪些特征;圆柱表面积的计算 方法等。 2.理清思路:同桌互说计算圆柱体积的步骤,先算出底 面积,再算出圆柱的体积;同桌说计算圆柱表面积的步 骤,先算出底面积和侧面积,再算出圆柱的表面积。 3.揭示课题圆柱表面积和体积的练习 二、 自主 探究 体验 感悟 1.学生完成练习三第 10 题。 读题时引导学生注意填写次序,交流时评价计算方法。 2.完成练习三第 11 题。 理解题目的意思,注意单位名称不同,这里先要将单位 统一成分米。让学生说说
36、统一成分米的理由。 独立完成解决实际问题;交流完成问题思考方法,体会 由一份数计算多份数的方法; 沟通两个问题之间的联系; 继续提出问题和解决问题。 3.完成练习三第 12 题。 增加一问:如果在水池 1 米处画一条水位线,水位线长 多少米? 引导学生分析题意思考三个问题分别求的是什么?如 何计算?学生独立列算式。分组交流计算方法。 4.完成练习三第 13 题。 引导学生分析题意思考问题分别求的是什么?如何计 算?学生独立列算式。 5.完成练习三第 14 题。 一个用塑料薄膜覆盖的蔬菜大棚,长 15 米,横截面是 一个半径 2 米的半圆。 (1)搭建这个大棚至少需要塑料 薄膜约多少平方米? (
37、2) 大棚内的空间大约有多大? (3) 大棚占地多少平方米?(增) 引导学生思考理解题意,确定解题的方法和步骤。 问题 1:计算表面积问题,计算半个圆柱的表面积;计 算的方法可以用圆柱表面积2,再加横截面面积。 问题 2:计算圆柱容积问题,计算半个圆柱的体积;计 算的方法可以用圆柱体积2。 6.完成练习三 15 题。 学生分析题意,探索先求出什么?再求什么?鼓励学生 用不同的方法解决问题。 7.完成练习三 16 题。 学生分析题意,探索先求出什么?再求什么?鼓励学生 用不同的方法解决问题。 8.探索练习三思考题。 用摘录、列表和画图的方法帮助学生理解题目的意思, 确定解题思考的方向。 半径是
38、5 厘米 放入 全部长度 上升 9 厘米 取出 8 厘米 下降 4 厘米 策略:圆钢取出 8 厘米长,取出的圆钢体积和 4 厘米相 对应,可以先计算出和 1 厘米对应的体积,再推算出 9 厘米的体积,就是圆钢的全部体积。 三、 延伸 拓展 实践 应用 1.有两个底面积相等的圆柱,第一个圆柱的高是第二个 圆柱的 4/7。第一个圆柱的体积是 24 立方厘米,第二个 圆柱的的体积比第一个圆柱多多少立方厘米? 2.压路机的滚筒是个圆柱,它的长是 2 米,滚筒横截面 半径是 1 米,如果滚筒每分钟滚动 5 周,那么 10 分钟可 压路多少平方米? 3.在直径 0.8 米的水管中,水流速度是每秒 2 米,
39、那么 1 分钟流过的水有多少立方米? 4.一个圆柱的高是 10 分米、侧面积是 125.6 平方分米, 它的体积是多少立方分米? 5.一个圆柱的底面半径是 10 分米、侧面积是 125.6 平 方分米,它的体积是多少立方分米? 有一个同学的列式是这样的:125.6102=628(立方 分米)对吗?为什么? 6.牙膏厂将牙膏口的直径由原来的 0.4 厘米改为 0.5 厘 米。如果每人每天使用牙膏的长度是 2 厘米左右,一年 里,每个人大约要比原来多用去多少立方厘米牙膏? 四、 回顾 交流 布置 作业 教师回顾练习要点,学生交流练习收获。 补充习题第 14-15 页。 板书板书 设计设计 教教 后
40、后 记记 邗江区数学实验校际联盟(邗江区实验学校)集体备课预案 主备人主备人: 审核人:审核人: 总第总第 课时课时 课课 题题 圆锥的体积圆锥的体积 授课时间授课时间 教教 学学 内内 容容 教科书第 20-21 页例 5 和试一试、练一练,完成练习四第 1-3 题。 补充习题第 16 页。 教教 学学 目目 标标 1.通过转化的思想,在实验的基础上使学生理解和掌握圆锥体积公式,能运用公式正确地计算 圆锥的体积。 2.培养学生的观察、 操作能力和初步的空间观念, 培养学生应用所学知识解决实际问题的能力。 3.渗透事物间相互联系的辩证唯物主义观点的启蒙教育。 重重 点点 难难 点点 教学重点:
41、通过转化的思想理解和掌握圆锥体积的计算公式。 教学难点:理解圆柱和圆锥等底等高时体积间的倍数关系。 教教 具具 学学 具具 1.准备若干同样的圆柱形容器,若干与圆柱等底等高的圆锥;若干水槽,若干小杯子,沙子和 水;铅锤 1 个;量筒一个。2.多媒体课件设计。 教 学 过 程 设 计教 学 过 程 设 计 教 学 流 程教 学 流 程 个 性 化 修 改个 性 化 修 改 一、 创设 情境 激发 兴趣 1.复习引入 师:同学们,我们已经学习过了哪些立体图形的体积计 算? 师:那现在谁来回忆一下长方体的体积计算公式呢? 生答板书: vabh 师:正方体的体积计算公式,谁来说? 生 2:正方体的体积
42、棱长棱长棱长 用字母表示是 va 3 师:圆柱体呢? 生 3: 圆柱体的体积底面积高 用字母表示是: v sh 2.教学圆锥的体积公式的推导过程 引出问题。 师:老师这里有一个铅锤,它是什么形状的? 生:圆锥。 师:你有办法知道这个铅锤的体积吗? (学生讨论,然后汇报交流) 。 生:我用排水法,把它放进盛水的量杯里,看水面升高 多少,就是铅锤的体积。 (同时上台演示给大家看) 。 师:你们认为这样的方法好吗? 生:好。 师:如果有很多这样大小不一样的铅锤呢? 生:如果每个圆锥都这样测,太麻烦了! 师:那你有什么好的想法吗? 生:我们以前学过的体积都有计算公式,我想要是圆锥 也有一个计算公式就好
43、了。 联想、猜测。 师: 圆锥的体积可能和什么图形的体积有关,有什么关 系?(引导学生将圆锥的体积与圆柱的体积联系起来。 ) 生:我认为圆锥的体积可能与圆柱的体积有关。 师:你是怎样想的呢? 二、 自主 探究 体验 感悟 1.师:下面通过试验,探究一下圆锥和圆柱体积之间的 关系。 各组准备好等底等高的圆柱和圆锥形容器。 出示课件: 让学生检查一下,是不是等底等高。(同时板书:等底等 高) 同时教师也拿两个等底等高的圆柱和圆锥。把圆锥放进 圆锥里面,让学生观察后猜想圆锥的体积与等底等高的 圆柱的体积有什么关系? 生 1:圆柱的体积可能是圆锥的 2 倍 生 2:圆锥的体积可能是圆柱的三分之一 生
44、3: 用倒水或倒沙子的方法合作探究。 师:小组合作,试验开始。 教师指导学生完成试验。 2.汇报交流。 师:通过试验,你发现圆柱的体积和圆锥的体积之间有 什么关系? 生 1: 我们组用圆锥盛满沙子, 往与它等底等高的圆柱里 倒,正好倒了三次,就装满了。这说明圆柱的体积是与 它等底等高的圆锥的 3 倍。 生 2: 我们组用圆柱盛满水, 往与它等底等高的圆锥里倒 了三次才倒完,这说明圆柱的体积是与它等底等高的圆 锥的 3 倍。 生 3: 我们组用圆锥盛满水, 往与它等底等高的圆柱里倒, 正好倒了三次,就装满了。这说明圆锥的体积等于与它 等底等高的圆柱的体积的3 1 。 师:刚才几个小组汇报得很好。
45、为了让大家看得更清楚, 现在老师用带有红色的水给大家现场演示一下: 3.导出公式 师:通过试验,你发现等底等高的圆锥、圆柱的体积有 什么关系?你能用字母表示出它们的关系吗? 生:圆柱的体积是与它等底等高的圆锥的体积的 3 倍, 圆锥的体积是与它等底等高的圆柱的体积的3 1 。 教师同时板书: V圆锥3 1 V圆柱 3 1 Sh 师:刚才同学们通过自主的合作探究,得出了圆锥的计 算公式, 这就是我们今天要学习的内容圆锥的体积。 (教师点题,同时板书:圆锥的体积) 三、 延伸 拓展 实践 应用 1.指导完成“试一试” 独立完成解题。追问:为何列式要乘三分之一。 2.练一练第 1 题 口头列式并口答
46、题中两个问题 3.练一练第 2 题 先说说两题中的已知条件有什么不同,怎样根据圆锥的 底面半径或直径求底面积再独立完成计算,反馈订正。 4.练习一第 1 题 说说题中的条件独立计算,提醒可以先约分再计算 5.练习一第 2 题 引导学生比较,体会简便的解题方法 6.练习一第 3 题 让学生说一说占地面积和空间就时求什么,再独立完成 解答,反馈交流。 四、 回顾 交流 布置 作业 1.今天我们通过猜想实验推导出圆锥的体积,在实际解 决问题时要能灵活运用。 2.作业: 补充习题第 16 页。 板书板书 设计设计 教教 后后 记记 邗江区数学实验校际联盟(邗江区实验学校)集体备课预案 主备人主备人:
47、审核人:审核人: 总第总第 课时课时 课课 题题 圆锥的体积练习课圆锥的体积练习课 授课时间授课时间 教教 学学 内内 容容 教科书第 22-23 页练习四第 4-12 题。 补充习题第 17 页。 教教 学学 目目 标标 1.通过练习, 使学生进一步理解和掌握圆锥体积公式, 能运用公式正确迅速地计算圆锥的体积。 2.通过练习,使学生进一步深刻理解圆柱和圆锥体积之间的关系。 3.进一步培养学生将所学知识运用和服务于生活的能力。 重重 点点 难难 点点 教学重点:灵活运用圆柱圆锥的有关知识解决实际问题。 教学难点:灵活运用圆柱圆锥的有关知识解决实际问题。 教教 具具 学学 具具 课件 教 学 过
48、 程 设 计教 学 过 程 设 计 教 学 流 程教 学 流 程 个 性 化 修 改个 性 化 修 改 一、 创设 情境 激发 兴趣 一、复习铺垫、内化知识。 1. 圆锥体的体积公式是什么?我们是如何推导的? 课件或再次演示推导过程。 2.圆柱和圆锥体积相互关系填空,加深对圆柱和圆锥相 互关系的理解。 (1)一个圆柱体积是 1.8 立方分米,与它等底等高的圆 锥的体积是( )立方分米。 (2)一个圆锥的体积是 1.8 立方分米,与它等底等高的 圆柱的体积是( )立方分米。 (3)一个圆柱与和它等底等高的圆锥的体积和是 1.44 立方分米。圆柱的体积是( )立方分米,圆 锥的体积是( )立方分米。 3.集体讨论研究第六题 根据题中圆柱的底、高分别与圆锥的底高之间的倍数关 系作出判断。题中与圆锥体积相等的圆柱是左起第三个 4.讨论第七题 使学生认识到:削成的圆锥和圆柱等底等高。完成(1)后 鼓励学生提不同的问题。 5.研究讨论第九题 (1) 根据直观图说说形成的圆锥的底面半径和高各是多 少? (2)分别计算