人教A版数学必修四课件:1.6 三角函数模型的简单应用.ppt

上传人(卖家):金钥匙文档 文档编号:465532 上传时间:2020-04-14 格式:PPT 页数:14 大小:1.55MB
下载 相关 举报
人教A版数学必修四课件:1.6 三角函数模型的简单应用.ppt_第1页
第1页 / 共14页
人教A版数学必修四课件:1.6 三角函数模型的简单应用.ppt_第2页
第2页 / 共14页
人教A版数学必修四课件:1.6 三角函数模型的简单应用.ppt_第3页
第3页 / 共14页
人教A版数学必修四课件:1.6 三角函数模型的简单应用.ppt_第4页
第4页 / 共14页
人教A版数学必修四课件:1.6 三角函数模型的简单应用.ppt_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、 问题一问题一:根据所学地理知识我们知道根据所学地理知识我们知道:在绍在绍 兴地区每天正午时太阳的高度角是会变化的兴地区每天正午时太阳的高度角是会变化的, 那你觉得这样的变化有规律吗那你觉得这样的变化有规律吗? 问题二问题二:如果你手头上只有一根尺如果你手头上只有一根尺,你能在操你能在操 场上测量出我们学校体育馆的高度吗场上测量出我们学校体育馆的高度吗? 你能建立相应的函数关系式吗你能建立相应的函数关系式吗? 如果我说我只要测量正午时体育馆影子的如果我说我只要测量正午时体育馆影子的 长度就可以计算出体育馆的高度你相信吗长度就可以计算出体育馆的高度你相信吗? 如图,某地一天从如图,某地一天从61

2、4时的温度变化曲线近似满时的温度变化曲线近似满 足函数足函数 ()求这一天()求这一天614时的最大温差。时的最大温差。 ()写出这段曲线的函数解析式。()写出这段曲线的函数解析式。 )0, 0(,sinAbxAy 注意注意 一般的,所求一般的,所求 出的函数模型只能近似地出的函数模型只能近似地 刻画这天刻画这天某个时段某个时段的温度的温度 变化情况,因此要特别注变化情况,因此要特别注 意自变量的意自变量的变化范围变化范围。 应用应用1 o 10 8 6 12 14 10 20 30 t/h T/oC 海水受日月的引力,在一定的时候发生涨落的现象海水受日月的引力,在一定的时候发生涨落的现象 叫

3、潮。一般地,早潮叫潮,晚潮叫汐。在通常情况叫潮。一般地,早潮叫潮,晚潮叫汐。在通常情况 下,船在涨潮时驶进航道,靠近船坞;卸货后,在下,船在涨潮时驶进航道,靠近船坞;卸货后,在 落潮时返回海洋。下面是某港口在某季节每天的时落潮时返回海洋。下面是某港口在某季节每天的时 间与水深关系表:间与水深关系表: 时刻时刻 0.0 3.00 6.00 9.00 12.00 15.00 18.00 21.00 24.00 水深水深 (米)(米) 5.0 7.5 5.0 2.5 5.0 7.5 5.0 2.5 5.0 (1)选用一个函数来近似描述这个港口的水深与时间选用一个函数来近似描述这个港口的水深与时间 的

4、函数关系的函数关系 应用应用2 x y O 3 6 9 12 15 18 21 24 2 4 6 解:以时间为横坐标,以水深为纵坐标,在直角坐标系中解:以时间为横坐标,以水深为纵坐标,在直角坐标系中 描出各点,并用平滑的曲线连接。描出各点,并用平滑的曲线连接。 时刻时刻 0.00 3.00 6.00 9.00 12.00 15.00 18.00 21.00 24.00 水深水深 5.0 7.5 5.0 2.5 5.0 7.5 5.0 2.5 5.0 bxAy)sin( 根据图象,可以考虑用根据图象,可以考虑用 函数函数 刻画水深与时间的关系。刻画水深与时间的关系。 x (2)一条货船的吃水深度

5、(船底与水面的距离)一条货船的吃水深度(船底与水面的距离) 为为4米,安全条例规定至少要有米,安全条例规定至少要有1.5米的安全间隙米的安全间隙 (船底与洋底的距离),该船何时能进入港口?(船底与洋底的距离),该船何时能进入港口? 在港口能呆多久?在港口能呆多久? 5 . 5y x y O 3 6 9 12 15 18 21 24 2 4 6 A B C D 61. 5,38. 0 BA xx (3)若某船的吃水深度为若某船的吃水深度为4米,安全间隙为米,安全间隙为 1.5米,该船在米,该船在2:00开始卸货,吃水深度以开始卸货,吃水深度以 每小时每小时0.3米的速度减少,那么该船在什么时米的

6、速度减少,那么该船在什么时 候必须停止卸货,将船驶向较深的水域。候必须停止卸货,将船驶向较深的水域。 )2(3 . 05 . 5xy x y O 3 6 9 12 15 2 4 6 2 P 5 . 6 p x A B C h0 如果在北京地区(纬度数是北纬如果在北京地区(纬度数是北纬40o)的一幢)的一幢 高为高为ho的楼房的楼房北面北面盖一新楼,要使新楼一层盖一新楼,要使新楼一层正正 午午的太阳的太阳全年全年不被前面的楼房遮挡,两楼的距不被前面的楼房遮挡,两楼的距 离不应小于多少?离不应小于多少? 应用应用3 M 最小时,由地理知识可知: 026 23 即在盖楼时为使后楼不被前楼遮挡,要留出

7、即在盖楼时为使后楼不被前楼遮挡,要留出 相当于楼高两倍的间距。相当于楼高两倍的间距。 0 00 000. 2 3426tantan h h C h MC 026 23 0000 3426| )2623(40|90C 解:解:由地理知识可知由地理知识可知,在北京地区要使新楼一在北京地区要使新楼一 层正午的太阳全年不被前面的楼房遮挡层正午的太阳全年不被前面的楼房遮挡,应应 当考虑太阳直射南回归线的情况当考虑太阳直射南回归线的情况,此时太阳此时太阳 直射纬度为直射纬度为: 练习练习2:小王想在”大叶池”小区买房,该小区的楼高小王想在”大叶池”小区买房,该小区的楼高 7层,每层层,每层3米,楼与楼之间

8、相距米,楼与楼之间相距15米。要使所买楼层米。要使所买楼层 在一年四季正午太阳不被前面的楼房遮挡,他应选择哪在一年四季正午太阳不被前面的楼房遮挡,他应选择哪 几层的房?几层的房? A南楼 北C 000 0 15tan90(3023 26) 15tan36 3411.13 h 3层以上层以上 练习练习1:绍兴市的纬度是北纬绍兴市的纬度是北纬300 ,开发商在某小区建若开发商在某小区建若 干幢楼干幢楼,楼高楼高7层,每层层,每层3米。要使所建楼房一楼在一年四米。要使所建楼房一楼在一年四 季正午太阳不被南面的楼房遮挡,两楼间的距离不应小于季正午太阳不被南面的楼房遮挡,两楼间的距离不应小于 多少?多少

9、? 0 57.3631.2834 . 1 tan h h MA 层378. 913.1115 小结小结: 1.三角函数作为描述现实世界中周期现象的三角函数作为描述现实世界中周期现象的 一种数学模型一种数学模型,可以用来研究很多问题可以用来研究很多问题,我们可我们可 以通过建立三角函数模型来解决实际问题以通过建立三角函数模型来解决实际问题,如如: 天气预报天气预报,地震预测地震预测,等等等等. 搜集数据搜集数据 利用计算机利用计算机 作出相应的作出相应的 散点图散点图 进行函数进行函数 拟合得出拟合得出 函数模型函数模型 利用函数利用函数 模型解决模型解决 实际问题实际问题 2.建立三角函数模型的一般步聚建立三角函数模型的一般步聚: 背景知识介绍 太阳直射角为: 太阳高度角为: |90 太阳光太阳光 90 90 |90 |90 地心地心 北半球北半球 南半球南半球 M 0北半球: (地球表面某地地球表面某地M处处) 纬度值为: 那么这三个量之间的那么这三个量之间的 关系是关系是: 太阳光直射南半球太阳光直射南半球 0 太阳光太阳光 90 |90 地心地心

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 人教A版 >
版权提示 | 免责声明

1,本文(人教A版数学必修四课件:1.6 三角函数模型的简单应用.ppt)为本站会员(金钥匙文档)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|