1、用比例解决问题教学设计一、教学目标1、能正确判断情景中的两种量是否成比例,并能用比例的意义解决实际问题。2、在经历解决问题的过程中,发展分析问题,解决问题的能力。3、学会从不同的角度思考问题,沟通“算术法”与“比例方法”的联系和区别,发展探究问题的解决能力。二、学情分析用正反比例解决问题,学生用以前的方法也可以解答,在这里让学生多掌握一种解法,提高学生灵活解题的能力。三、教学重点、难点重点:掌握用比例的知识、解决问题的方法和步骤难点:利用比例关系,列出含有未知数的等式。四、教学过程(一) 以用导知行复习成比例的量。1、学生说说生活中有哪些成比例的量?2、判断两种想关联的量是不是成正比例的关键是
2、什么?3、引入课题:在生活中成比例的量真不少,今天这节课,我们继续学习用比例知识解决生活中的问题。(板书:用比例解决问题)(二)知用互促1、出示61页例5,学生理解题意,自己算一算,在小组内交流。2、汇报交流:28810 问: 为什么要先求出单价?(单价不变)当单价一定时,总价和数量成正比例关系。例5除了用算术方法外,还可以用比例的知识列方程解答。指名学生说说这题中有哪三个量?这三个量之间是什么样的数量关系?你是怎么判断的?根据这样的比例关系,你能列出等式吗?4、成果展示解:设李奶奶家上个月的水费为x元。学生说说列式的依据是什么?8x=2810 8x=280X=35 指名检验小结:解决这个问题
3、的关键是什么?(找到不变的量,只要两个量的比值一定,就可以用正比例关系解答。)5、比较分析同时呈现28810 问:用“算术法”和“比例法”解题,有什么联系和区别?(学生小组交流)小结:两种方法在计算求解时殊途同归,但算术方法必须先求出那个不变量的具体值,而比例方法,只需根据数量关系,表示出这个不变量即可,思维过程更广泛,这就是方程的优势。6、变式练习第61页做一做,学生独立完成,集体讲评。(用算术方法解必须先求单价,求总价用乘法,求用水量用除法。而比例方法,使用的是同一个比例式。)(三)以用拓知行1、出示62页例6,学生理解题意,自己算一算,指名板书,小结。2、学生独立完成62页做一做3、完成63页3、4题,64页7、8题。(四)课堂总结用正反比例解决问题的关键是什么?优势在哪里?