1、高三年级(数学) 第 1 页(共 4 页) 延庆区高三模拟考试试卷 数学 2020. 3 本试卷共 5 页,150 分。考试时长 120 分钟。考生务必将答案答在答题纸上,在试 卷上作答无效。考试结束后,将答题纸交回。 第一部分第一部分(选择题选择题,共,共 40 分分) 一一、选择题选择题共共 10 小题小题,每小题,每小题 4 分分,共,共 40 分。在分。在每小题列出的四个选项中,选每小题列出的四个选项中,选出出符合符合 题目要求的一项题目要求的一项。 (1)已知复数 2i 2izaa是正实数,则实数a的值为 (A)0 (B)1 (C)1 (D)1 (2)已知向量(1, )ak,( ,2
2、)bk,若a与b方向相同,则k等于 (A)1 (B)2 (C)2 (D)2 (3)下列函数中最小正周期为的函数是 (A)sinyx (B) 1 cos 2 yx (C)tan2yx (D)|sin|yx (4)下列函数中,是奇函数且在其定义域上是增函数的是 (A) 1 y x (B)tanyx (C) ee xx y (D) 2,0 2,0 xx y xx (5)某四棱锥的三视图所示,已知 该四棱锥的体积为 4 3 3 ,则它的表 面积为 (A)8 (B)12 (C)44 3 (D)20 (6) 25 1 (2)x x 的展开式中, 4 x的系数是 (A)160 (B)80 (C)50 (D)
3、10 1 1 正(主)视图 1 1 侧(左)视图 俯视图 高三年级(数学) 第 2 页(共 4 页) (7)在平面直角坐标系xOy中,将点(1,2)A绕原点O逆时针旋转90到点B,设直线 OB与x轴正半轴所成的最小正角为,则cos等于 (A) 2 5 5 (B) 5 5 (C) 5 5 (D) 2 5 (8) 已知直线, a b, 平面, ,b,/a,ab, 那么 “a” 是 “” 的 (A)充分不必要条件 (B)必要不充分条件 (C)充分必要条件 (D)既不充分也不必要条件 (9) 某企业生产,A B两种型号的产品,每年的产量分别为10万支和40万支,为了扩 大再生产,决定对两种产品的生产线
4、进行升级改造,预计改造后的,A B两种产品的 年产量的增长率分别为50%和20%,那么至少经过多少年后,A产品的年产量会 超过B产品的年产量(取lg20.3010) (A)6 年 (B)7年 (C)8年 (D)9年 (10) 已知双曲线 22 :1 169 xy C 的右焦点为F, 过原点O的直线与双曲线C交于 , A B两 点,且60AFB,则BOF的面积为 (A)3 3 2 (B)9 3 2 (C)3 2 (D) 9 2 第二部分第二部分(非选择非选择题,共题,共 110 分分) 二二、填空题共、填空题共 5 小题小题,每小题,每小题 5 分分,共,共 25 分分。 (11)已知集合 |1
5、 k Mx x ,且3M ,则k的取值范围是 (12)经过点( 2,0)M 且与圆 22 1xy相切的直线l的方程是 (13)已知函数 22 ( )sinsin2cosf xxxx,则() 12 f (14) 某网店统计连续三天出售商品的种类情况: 第一天售出19种商品, 第二天售出13 种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商 高三年级(数学) 第 3 页(共 4 页) 品有4种,则该网店第一天售出但第二天未售出的商品有 种;这三天 售出的商品至少有 种. (15) 在ABC中,10AB ,D是BC边的中点. 若6AC ,60A , 则AD 的长等于 ;若45
6、CAD,6 2AC ,则ABC的面积等于 . 三三、解答题解答题共共 6 小题小题,共,共 85 分分。解答。解答应应写出文字说明,写出文字说明,演演算算步骤步骤或证明过程。或证明过程。 (16) (本小题 14 分) 如图,四棱锥PABCD的底面ABCD是正方形,4AB , PDPC,O是CD的中点,PO 平面ABCD,E是棱PC 上的一点,/PA平面BDE. ()求证:E是PC的中点; ()求证:PD和BE所成角等于90. (17) (本小题 14 分) 已知数列 n a是等差数列, n S是 n a的前 n 项和, 10 16a, . ()判断 2024 是否是数列 n a中的项,并说明
7、理由; ()求 n S的最值. 从 8 10a , 8 8a , 8 20a 中任选一个,补充在上面的问题中并作答. 注:如果选择多个条件分别解答,按第一个解答计分。 (18) (本小题 14 分) A,B,C 三个班共有 120 名学生,为调查他们的上网情况,通过分层抽样获得了部 分学生一周的上网时长,数据如下表(单位:小时) : A 班 12 13 13 18 20 21 B 班 11 11.5 12 13 13 17.5 20 C 班 11 13.5 15 16 16.5 19 21 ()试估计 A 班的学生人数; O E D A C B P 高三年级(数学) 第 4 页(共 4 页)
8、() 从这120名学生中任选1名学生, 估计这名学生一周上网时长超过15小时的概率; ()从 A 班抽出的 6 名学生中随机选取 2 人,从 B 班抽出的 7 名学生中随机选取 1 人,求这 3 人中恰有 2 人一周上网时长超过 15 小时的概率. (19) (本小题 14 分) 已知函数 2 2 21 ( ) 1 axa f x x ,其中0a. ()当1a 时,求曲线( )yf x在原点处的切线方程; ()若函数( )f x在0,)上存在最大值和最小值,求a的取值范围. (20) (本小题 15 分) 已知椭圆 22 22 :1(0) xy Gab ab 的左焦点为(2,0)F , 且经过
9、点(2,1)C , ,A B分别是G的右顶点和上顶点,过原点的直线 与G交于,P Q两点(点在第 一象限) ,且与线段交于点. ()求椭圆G的标准方程; ()若3PQ ,求直线 的方程; ()若的面积是的面积的4倍,求直线 的方程. (21) (本小题 14 分) 在数列 n a中,若 * n a N,且 1 , , 2 3, n n n nn a a a aa 是偶数 是奇数 (1,2,3,n) ,则称 n a为 “J 数列”.设 n a为“J 数列” ,记 n a的前n项和为 n S. ()若 1 10a ,求 3n S的值; ()若 3 17S ,求 1 a的值; ()证明: n a中总
10、有一项为1或3. OlQ ABM l BOPBMQl 高三年级(数学) 第 5 页(共 4 页) 延庆区延庆区 2019-2020 学年度高三数学试卷评分参考学年度高三数学试卷评分参考 一、选择题一、选择题: (每小题每小题 4 分,共分,共 10 小题,共小题,共 40 分分. 在每小题给出的四个选项中,只有在每小题给出的四个选项中,只有 一项是符合题目要求的一项是符合题目要求的) 1. C 2D 3D 4C 5. B 6B 7A 8. C 9. B 10. A 二二、填空填空题题: (每小题每小题 5 分,共分,共 5 小题,共小题,共 25 分分) 11(,3); 12. 3 (2) 3
11、 yx ; 13 13 2 ; 1416,29; 157,42. 三、解答题: (三、解答题: (共共 6 小题,共小题,共 85 分分. 解答应写出文字说明、演算步骤解答应写出文字说明、演算步骤.) 16.()联结AC,设AC与BD交于F,联结EF, 1 分 因为 / /PA平面BDE, 平面PAC平面BDE=EF, 所以 / /PAEF 4 分 因为 ABCD是正方形, 所以 F是AC的中点 所以 E是PC的中点 6 分 () (法一)因为 PO平面ABCD, 所以 POBC 7 分 因为 ABCD是正方形, 所以 BCCD 因为 POCDO 所以 BC 平面PDC 10 分 所以 BCP
12、D 因为 PDPC 因为 BCPCC 所以 PD 平面PBC 13 分 因为 BE 平面PBC 所以 PDBE 所以 PD与BE成90角. 14 分 (法二)连接OF, E D A C B P F O 高三年级(数学) 第 6 页(共 4 页) 因为 PO平面ABCD, 所以 POCD, POOF. 因为 ABCD是正方形, 所以 OFCD. 所以 ,OF OC OP两两垂直. 以,OF OC OP分别为x、y、z建立空间直角坐标系Oxyz.8 分 则(0,0,2)P,(0, 2,0)D,(4,2,0)B,(0,1,1)E, (0, 2, 2)PD ,( 3, 1,1)BE , 10 分 0
13、( 3)( 2) ( 1)( 2) 1PD BE 0 13 分 所以所以 PD与BE成90角. 14 分 17. 解:选 ()因为 108 16,10aa, 所以3d 2 分 所以 18 7102111aad 4 分 所以 1 (1)11 (1) 3 n aandn 314n 6 分 令 3142024n,则32038n 此方程无正整数解 所以2024不是数列 n a中的项. 8 分 () (法一)令0 n a , 即 3140n,解得: 142 4 33 n 当5n 时,0, n a 当4n时,0, n a 11 分 当4n 时, n S的最小值为 4 11 85226S .13 分 n S
14、无最大值 14 分 高三年级(数学) 第 7 页(共 4 页) () (法二) 2 1 ()325 222 n n n aa Snn , 251 4 266 b a 11 分 当4n 时, n S的最小值为 4 325 16426 22 S .13 分 n S无最大值 14 分 选 () 108 16,8aa, 4d 2 分 18 782820aad 4 分 1 (1)20(1)4 n aandn 424n 6 分 令 4242024n,则42048n 解得512n 2024是数列 n a中的第 512 项. 8 分 ()令0 n a , 即 4240n,解得:6n 当6n 时,0, n a
15、当6n时,0, n a 当6n时,0, n a 11 分 当5n 或6n 时, n S的最小值为 56 20 16 12 8 460SS . 13 分 n S无最大值 14 分 选 () 108 16,20aa, 2d 2 分 高三年级(数学) 第 8 页(共 4 页) 18 720 1434aad 4 分 1 (1)34(1)( 2) n aandn 236n 6 分 令 2362024n,则994n (舍去) 2024不是数列 n a中的项. 8 分 ()令0 n a , 即 2360n,解得:18n 当18n 时,0, n a 当18n 时,0, n a 当18n时,0, n a 11
16、分 当17n 或18n 时, n S的最大值为 1718 18(340) 306 2 SS . 13 分 n S无最小值. 14 分 18 (本小题满分 14 分) 解: ()由题意知,抽出的 20 名学生中,来自A班的学生有6名根据分层抽样 方法,A班的学生人数估计为 6 12036 20 3 分 ()设从选出的 20 名学生中任选 1 人,共有 20 种选法,4 分 设此人一周上网时长超过 15 小时为事件 D, 其中 D 包含的选法有 3+2+4=9 种, 6 分 9 () 20 P D. 7 分 由此估计从 120 名学生中任选 1 名,该生一周上网时长超过 15 小时的 概率为 9
17、20 . 8 分 高三年级(数学) 第 9 页(共 4 页) ()设从A班抽出的 6 名学生中随机选取 2 人,其中恰有(12)ii 人一周上 网超过 15 小时为事件 i E,从B班抽出的 7 名学生中随机选取 1 人,此人一周上网超 过 15 小时为事件F 则所求事件的概率为: 21111 35332 21 21 67 15 1811 () 15 735 C CC C C P E FE F C C . 14 分 ()另解:从 A 班的 6 人中随机选 2 人,有 2 6 C种选法,从 B 班的 7 人中随机选 1 人,有 1 7 C种选法, 故选法总数为: 21 67 15 7105CC种
18、 10 分 设事件“此 3 人中恰有 2 人一周上网时长超过 15 小时”为E, 则E中包含以下情况: (1)从 A 班选出的 2 人超 15 小时,而 B 班选出的 1 人不超 15 小时, (2)从 A 班选出的 2 人中恰有 1 人超 15 小时,而 B 班选出的 1 人 超 15 小时, 11 分 所以 21111 35332 21 67 15 1811 ( ) 15 735 C CC C C P E C C . 14 分 19 (本小题满分 14 分) ()解: 22 2 ) 1( )1 (2 )(1 x x xfa时,当. 切线的斜率2)0( fk; 0)0(f 曲线)(xfy 在
19、原点处的切线方程为:xy2. 5 分 () 22 22 ) 1( 2) 12() 1(2 )( x xaaxxa xf 2 2222 222221 () (1)(1) axaxaaxxa xx ()() 7 分 (1)当时,0a0 1 00)( 21 a xaxxf; 则的变化情况如下表:随、xxfxf)()( )上单调递减,)上单调递增,在(在(, 11 , 0)( aa xf 9 分 高三年级(数学) 第 10 页(共 4 页) x 0 (0, a 1 ) a 1 (, a 1 ) )(x f 0 )(xf 1 2 a 递增 ) 1 ( a f 递减 法法 1: 2 ) 1 ()(a a
20、fxf的最大值为 10 分 ,1)0()(0)( 2 恒成立)时,(存在最小值,则若afxfxxf 1 1 12 2 2 2 a x aax 即: xa a xaax 1 2 1 12 2 22 )(在), 0( x恒成立, 0 2 1 2 a a . 1001, 0 2 aaa, 13 分 所以a的取值范围为 1 , 0(. 14 分 法法 2: 2 ) 1 ()(a a fxf的最大值为; 10 分 当 1 x a 时,22ax , 22 2110axaa , 0)(,xfx时; 即 1 , 0 a x时, 22 ( )1,f xaa; ) 1 , a x时, 2 ( )0f xa ( ,
21、 01)0()( 2 afxf存在最小值,则若, 10a 所以a的取值范围为 1 , 0(. 14 分 高三年级(数学) 第 11 页(共 4 页) (2)当时,0a0 1 00)( 21 a xaxxf;. 则的变化情况如下表:随、xxfxf)()( x 0 (0,a) a ( ,a) )(x f - 0 + )(xf 1 2 a 递减 )( af 递增 )上单调递增,)上单调递减,在(在(, 0)(aaxf 法法 1:1)()(afxf的最小值为. 2 ( )0( )1,f xxf xa若存在最大值,则,)时,恒成立 2 2 2 21 1 1 axa a x 即: xa a xaax 1
22、2 1 12 2 22 )(在), 0( x恒成立, 101, 0, 0 2 1 2 2 aaa a a ,. 综上:a的取值范围是 1 , 0( 1,(. 法法 2:1)()(afxf的最小值为; 当xa时, 2 22axa , 22 2110axaa , 0)(,xfx; 即0,xa时, 1, 1)( 2 axf;)xa ,时,)0 , 1)(xf 01)0()( 2 afxf存在最大值,则若,1.a 综上:a的取值范围是 1 , 0( 1,(. 20 (本小题满分 15 分) 高三年级(数学) 第 12 页(共 4 页) 解: ()法一:依题意可得 22 222 2, 21 1, . c
23、 ab abc 解得 2 2 2. a b c , , 所以椭圆的标准方程为 22 1 42 xy . 3 分 法二:设椭圆的右焦点为 1 F,则 1 |3CF , 24,2aa, 2c , 2b , 所以椭圆的标准方程为 22 1 42 xy . 3 分 ()因为点Q在第一象限,所以直线l的斜率存在, 4 分 设直线l的斜率为k,则直线l的方程为ykx,设直线 l与该椭圆的交点 为 1122 ( ,),(,)P x yQ xy 由 22 24 ykx xy 可得 22 (1 2)40kx, 5 分 易知0 ,且 1212 2 4 0, 12 xxx x k , 6 分 则 2222 1212
24、121 2 ()()1()4PQxxyykxxx x 7 分 2 2 22 41 10443 1 21 2 k k kk , 所以 2 714 , 22 kk (负舍),所以直线l的方程为 14 2 yx. 8 分 ()设(,) mm M xy, 00 ,Q xy,则 00 ,Pxy,易知 0 02x, 0 01y. 由 2,0A ,(0,2)B,所以直线AB的方程为220xy. 9 分 高三年级(数学) 第 13 页(共 4 页) 若使BOP的面积是BMQ的面积的 4 倍,只需使得4OQMQ, 10 分 法一: 即 3 4 M Q x x . 11 分 设直线l的方程为ykx,由 + 220
25、 ykx xy 得, 22 (,) 1212 k M kk 12 分 由 22 24 ykx xy 得, 22 22 (,) 1 21 2 k Q kk , 13 分 代入可得 2 1418 270kk,即: 2 7 79 20 2 kk 解得 9 28 14 k ,所以 9 28 14 yx . 15 分 法二:所以 444 (,) 333 mm OQOMxy ,即 44 (,) 33 mm Qxy . 11 分 设直线l的方程为ykx,由 220 ykx xy 得, 22 (,) 1212 k M kk 12 分 所以 88 (,) 33 233 2 k Q kk ,因为点Q在椭圆G上,所
26、以 22 00 1 42 xy , 13 分 代入可得 2 1418 270kk,即: 2 7 79 20 2 kk 解得 9 28 14 k , 所以 9 28 14 yx . 15 分 法三:所以 00 333 (,) 444 OMOQxy ,即 00 33 (,) 44 Mxy . 11 分 点M在线段AB上,所以 00 33 2 20 44 xy,整理得 00 8 2 3 xy , 12 分 高三年级(数学) 第 14 页(共 4 页) 因为点Q在椭圆G上,所以 22 00 1 42 xy , 把式代入式可得 2 00 912 270yy,解得 0 2 21 3 y . 13 分 于是
27、 00 842 2 33 xy,所以, 0 0 9 28 14 y k x . 所以,所求直线 的方程为 9 28 14 yx . 15 分 21.解: ()当 1 10a 时, n a中的各项依次为10,5,8,4,2,1,4,2,1,, 所以 3 716 n Sn. 3 分 () 若 1 a是奇数,则 21 3aa是偶数, 21 3 3 22 aa a , 由 3 17S ,得 1 11 3 (3)17 2 a aa ,解得 1 5a ,适合题意. 若 1 a是偶数,不妨设 * 1 2 ()ak kN,则 1 2 2 a ak. 若k是偶数, 则 2 3 22 ak a , 由 3 17S
28、 , 得21 7 2 k kk, 此方程无整数解; 若k是奇数, 则 3 3ak,由 3 17S ,得23 1 7kkk,此方程无整数解. 综上, 1 5a . 8 分 ()首先证明:一定存在某个 i a,使得6 i a成立. 否则, 对每一个 * iN, 都有6 i a , 则在 i a为奇数时, 必有 2 3 2 i ii a aa ; 在 i a为偶数时,有 2 3 2 i ii a aa ,或 2 4 i ii a aa . 因此,若对每一个 * iN,都有6 i a ,则 135 ,a a a单调递减, 注意到 * n a N,显然这一过程不可能无限进行下去, 所以必定存在某个 i a,使得6 i a成立. 经检验,当2 i a ,或4 i a ,或5 i a 时, n a中出现1; l 高三年级(数学) 第 15 页(共 4 页) 当6 i a 时, n a中出现3, 综上, n a中总有一项为1或3. 14 分