高等数学(下)教学课件-d8-3.ppt

上传人(卖家):晟晟文业 文档编号:5171472 上传时间:2023-02-16 格式:PPT 页数:26 大小:1.19MB
下载 相关 举报
高等数学(下)教学课件-d8-3.ppt_第1页
第1页 / 共26页
高等数学(下)教学课件-d8-3.ppt_第2页
第2页 / 共26页
高等数学(下)教学课件-d8-3.ppt_第3页
第3页 / 共26页
高等数学(下)教学课件-d8-3.ppt_第4页
第4页 / 共26页
高等数学(下)教学课件-d8-3.ppt_第5页
第5页 / 共26页
点击查看更多>>
资源描述

1、四、二次曲面四、二次曲面第三节一、曲面方程的概念一、曲面方程的概念二、旋转曲面二、旋转曲面 三、柱面三、柱面机动 目录 上页 下页 返回 结束 曲面及其方程 第八八章 一、曲面方程的概念一、曲面方程的概念求到两定点A(1,2,3)和B(2,-1,4)等距222)3()2()1(zyx07262zyx化简得即说明说明:动点轨迹为线段 AB 的垂直平分面.引例引例:显然在此平面上的点的坐标都满足此方程,不在此平面上的点的坐标不满足此方程.222)4()1()2(zyx解解:设轨迹上的动点为,),(zyxM,BMAM 则离的点的轨迹方程.机动 目录 上页 下页 返回 结束 定义定义1.0),(zyx

2、FSzyxo如果曲面 S 与方程 F(x,y,z)=0 有下述关系:(1)曲面 S 上的任意点的坐标都满足此方程;则 F(x,y,z)=0 叫做曲面曲面 S 的的方程方程,曲面 S 叫做方程 F(x,y,z)=0 的图形图形.两个基本问题两个基本问题 :(1)已知一曲面作为点的几何轨迹时,(2)不在曲面 S 上的点的坐标不满足此方程,求曲面方程.(2)已知方程时,研究它所表示的几何形状(必要时需作图).机动 目录 上页 下页 返回 结束 故所求方程为例例1.求动点到定点),(zyxM),(0000zyxM的轨迹方程.特别,当M0在原点时,球面方程为解解:设轨迹上动点为RMM0即依题意距离为 R

3、xyzoM0M222yxRz表示上(下)球面.Rzzyyxx202020)()()(2202020)()()(Rzzyyxx2222Rzyx机动 目录 上页 下页 返回 结束 例例2.研究方程042222yxzyx解解:配方得5,)0,2,1(0M此方程表示:说明说明:如下形式的三元二次方程(A 0)都可通过配方研究它的图形.其图形可能是表示怎样的曲面.半径为的球面.0)(222GFzEyDxzyxA球心为 一个球面球面,或点点,或虚轨迹虚轨迹.5)2()1(222zyx机动 目录 上页 下页 返回 结束 定义定义2.一条平面曲线二、旋转曲面二、旋转曲面 绕其平面上一条定直线定直线旋转一周所形

4、成的曲面叫做旋转曲面旋转曲面.该定直线称为旋转旋转轴轴 .例如例如:机动 目录 上页 下页 返回 结束 建立yoz面上曲线C 绕 z 轴旋转所成曲面的方程:故旋转曲面方程为,),(zyxM当绕 z 轴旋转时,0),(11zyf,),0(111CzyM若点给定 yoz 面上曲线 C:),0(111zyM),(zyxM1221,yyxzz则有0),(22zyxf则有该点转到0),(zyfozyxC机动 目录 上页 下页 返回 结束 思考:思考:当曲线 C 绕 y 轴旋转时,方程如何?0),(:zyfCoyxz0),(22zxyf机动 目录 上页 下页 返回 结束 例例3.3.试建立顶点在原点,旋转

5、轴为z轴,半顶角为 的圆锥面方程.解解:在yoz面上直线L 的方程为cotyz 绕z 轴旋转时,圆锥面的方程为cot22yxz)(2222yxazcota令xyz两边平方L),0(zyM机动 目录 上页 下页 返回 结束 xy例例4.求坐标面 xoz 上的双曲线12222czax分别绕 x轴和 z 轴旋转一周所生成的旋转曲面方程.解解:绕 x 轴旋转122222czyax绕 z 轴旋转122222czayx这两种曲面都叫做旋转双曲面.所成曲面方程为所成曲面方程为z机动 目录 上页 下页 返回 结束 xyz三、柱面三、柱面引例引例.分析方程表示怎样的曲面.的坐标也满足方程222Ryx解解:在xo

6、y 面上,表示圆C,222Ryx222Ryx沿曲线C平行于 z 轴的一切直线所形成的曲面称为圆圆故在空间222Ryx过此点作柱面柱面.对任意 z,平行 z 轴的直线 l,表示圆柱面圆柱面oC在圆C上任取一点,)0,(1yxMlM1M),(zyxM点其上所有点的坐标都满足此方程,机动 目录 上页 下页 返回 结束 xyzxyzol定义定义3.平行定直线并沿定曲线 C 移动的直线l 形成的轨迹称为柱面柱面.表示抛物柱面抛物柱面,母线平行于 z 轴;准线为xoy 面上的抛物线.z 轴的椭圆柱面椭圆柱面.xy2212222byaxz 轴的平面平面.0 yx表示母线平行于 C(且 z 轴在平面上)表示母

7、线平行于C 称为准线准线,l称为母线母线.xyzoo机动 目录 上页 下页 返回 结束 xzy2l一般地,在三维空间柱面,柱面,平行于 x 轴;平行于 y 轴;平行于 z 轴;准线 xoz 面上的曲线 l3.母线柱面,准线 xoy 面上的曲线 l1.母线准线 yoz 面上的曲线 l2.母线表示方程0),(yxF表示方程0),(zyG表示方程0),(xzHxyz3l机动 目录 上页 下页 返回 结束 xyz1l四、二次曲面四、二次曲面三元二次方程 适当选取直角坐标系可得它们的标准方程,下面仅 就几种常见标准型的特点进行介绍.研究二次曲面特性的基本方法:截痕法截痕法 其基本类型有:椭球面、抛物面、

8、双曲面、锥面的图形通常为二次曲面二次曲面.FzxEyxDxyCzByAx2220JIzHyGx(二次项系数不全为 0)机动 目录 上页 下页 返回 结束 zyx1 1.椭球面椭球面),(1222222为正数cbaczbyax(1)范围:czbyax,(2)与坐标面的交线:椭圆,012222zbyax,012222xczby 012222yczax机动 目录 上页 下页 返回 结束 1222222czbyax与)(11czzz的交线为椭圆:1zz(4)当 ab 时为旋转椭球面;同样)(11byyy的截痕)(axxx11及也为椭圆.当abc 时为球面.(3)截痕:1)()(212221222222

9、zcyzcxcbcacba,(为正数)机动 目录 上页 下页 返回 结束 z2.抛物面抛物面zqypx2222(1)椭圆抛物面(p,q 同号)(2)双曲抛物面(鞍形曲面)zqypx2222zyx特别,当 p=q 时为绕 z 轴的旋转抛物面.(p,q 同号)zyx机动 目录 上页 下页 返回 结束 3.双曲面双曲面(1)(1)单叶双曲面单叶双曲面by 1)1上的截痕为平面1zz 椭圆.时,截痕为22122221byczax(实轴平行于x 轴;虚轴平行于z 轴)1yy zxy),(1222222为正数cbaczbyax1yy 平面 上的截痕情况:机动 目录 上页 下页 返回 结束 双曲线:虚轴平行

10、于x 轴)by 1)2时,截痕为0czax)(bby或by 1)3时,截痕为22122221byczax(实轴平行于z 轴;1yy zxyzxy机动 目录 上页 下页 返回 结束 相交直线:双曲线:0(2)双叶双曲面双叶双曲面),(1222222为正数cbaczbyax上的截痕为平面1yy 双曲线上的截痕为平面1xx 上的截痕为平面)(11czzz椭圆注意单叶双曲面与双叶双曲面的区别:双曲线zxyo222222czbyax单叶双曲面11双叶双曲面P18 目录 上页 下页 返回 结束 图形图形4.椭圆锥面椭圆锥面),(22222为正数bazbyax上的截痕为在平面tz 椭圆在平面 x0 或 y0

11、 上的截痕为过原点的两直线.zxyo1)()(2222t byt axtz,可以证明,椭圆上任一点与原点的连线均在曲面上.(椭圆锥面也可由圆锥面经 x 或 y 方向的伸缩变换得到,见书 P316)xyz机动 目录 上页 下页 返回 结束 内容小结内容小结1.空间曲面三元方程0),(zyxF 球面2202020)()()(Rzzyyxx 旋转曲面如,曲线00),(xzyf绕 z 轴的旋转曲面:0),(22zyxf 柱面如,曲面0),(yxF表示母线平行 z 轴的柱面.又如,椭圆柱面,双曲柱面,抛物柱面等.机动 目录 上页 下页 返回 结束 2.二次曲面三元二次方程),(同号qp 椭球面12222

12、22czbyax 抛物面:椭圆抛物面双曲抛物面zqypx2222zqypx2222 双曲面:单叶双曲面2222byax22cz1双叶双曲面2222byax22cz1 椭圆锥面:22222zbyax机动 目录 上页 下页 返回 结束 5x922 yx1 xy斜率为1的直线平面解析几何中空间解析几何中方 程平行于 y 轴的直线 平行于 yoz 面的平面 圆心在(0,0)半径为 3 的圆以 z 轴为中心轴的圆柱面平行于 z 轴的平面思考与练习思考与练习1.指出下列方程的图形:机动 目录 上页 下页 返回 结束 2.P31 题3,10机动 目录 上页 下页 返回 结束 题题10 答案答案:在 xoy 面上;194)1(22轴旋转一周绕椭圆xyx;19)2(22轴旋转一周绕双曲线yyx;1)3(22轴旋转一周绕双曲线xyx.,)4(轴旋转一周绕直线面上在zayzyoz作业作业 P31 2;4;7;8(1),(5);11第四节 目录 上页 下页 返回 结束

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 大学
版权提示 | 免责声明

1,本文(高等数学(下)教学课件-d8-3.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|