1、高 中 数 学 知 识 点 总 结1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。必修5:解三角形、数列、不等式。选修课程有4个系列:系列1:由2个模块组成。选修11:常用逻辑用语、圆锥曲线与方程、导数及其应用。选修12:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。选修21:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。选修22:导数及其应用,推理与证明、数系的扩充与复数选修23:计数原理、随机变
2、量及其分布列,统计案例。系列3:由6个专题组成。选修31:数学史选讲。 选修32:信息安全与密码。选修33:球面上的几何。 选修34:对称与群。 选修35:欧拉公式与闭曲面分类。 选修36:三等分角与数域扩充。系列4:由10个专题组成。选修41:几何证明选讲。 选修42:矩阵与变换。选修43:数列与差分。 选修44:坐标系与参数方程。选修45:不等式选讲。 选修46:初等数论初步。选修47:优选法与试验设计初步。 选修48:统筹法与图论初步。选修49:风险与决策。 选修410:开关电路与布尔代数。2重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线
3、高考相关考点:集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用平面向量:有关概念与初等运算、坐标运算、数量积及其应用不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系圆锥曲线方程:椭圆、
4、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量排列、组合和概率:排列、组合应用题、二项式定理及其应用概率与统计:概率、分布列、期望、方差、抽样、正态分布导数:导数的概念、求导、导数的应用复数:复数的概念与运算高中数学 必修1知识点 第一章 集合与函数概念1.1集合 (1)集合的概念 集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法表示自然数集,或表示正整数集,表示整数集,表示有理数集,表示实数集.(3)集合与元素间的关系对象与集合的关系是,或者,两者必居其一.(4)集合的表示法
5、自然语言法:用文字叙述的形式来描述集合.列举法:把集合中的元素一一列举出来,写在大括号内表示集合.描述法:|具有的性质,其中为集合的代表元素.图示法:用数轴或韦恩图来表示集合.(5)集合的分类含有有限个元素的集合叫做有限集.含有无限个元素的集合叫做无限集.不含有任何元素的集合叫做空集().【1.1.2】集合间的基本关系(6)子集、真子集、集合相等名称记号意义性质示意图子集(或A中的任一元素都属于B(1)AA(2)(3)若且,则(4)若且,则或真子集AB(或BA),且B中至少有一元素不属于A(1)(A为非空子集)(2)若且,则集合相等A中的任一元素都属于B,B中的任一元素都属于A(1)AB(2)
6、BA(7)已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集名称记号意义性质示意图交集且(1)(2)(3) 并集或(1)(2)(3) 补集 2 【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集或把看成一个整体,化成,型不等式来求解(2)一元二次不等式的解法判别式二次函数的图象一元二次方程的根(其中无实根的解集或的解集1.2函数及其表示 【1.2.1】函数的概念(1)函数的概念设、是两个非空的数集,如果按照某种对应法则,对于集合中任何一个数,在集合中都有唯一确定的数和它对应,那么
7、这样的对应(包括集合,以及到的对应法则)叫做集合到的一个函数,记作函数的三要素:定义域、值域和对应法则只有定义域相同,且对应法则也相同的两个函数才是同一函数(2)区间的概念及表示法设是两个实数,且,满足的实数的集合叫做闭区间,记做;满足的实数的集合叫做开区间,记做;满足,或的实数的集合叫做半开半闭区间,分别记做,;满足的实数的集合分别记做注意:对于集合与区间,前者可以大于或等于,而后者必须(3)求函数的定义域时,一般遵循以下原则:是整式时,定义域是全体实数是分式函数时,定义域是使分母不为零的一切实数是偶次根式时,定义域是使被开方式为非负值时的实数的集合对数函数的真数大于零,当对数或指数函数的底
8、数中含变量时,底数须大于零且不等于1中,零(负)指数幂的底数不能为零若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集对于求复合函数定义域问题,一般步骤是:若已知的定义域为,其复合函数的定义域应由不等式解出对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值因此求函数的最值与值域,其实质是相同的,只是提问的角度
9、不同求函数值域与最值的常用方法: 观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值配方法:将函数解析式化成含有自变量的平方式与常数的和,再根据变量的取值范围确定函数的值域或最值判别式法:若函数可以化成一个系数含有的关于的二次方程,则在时,由于为实数,故必须有,从而确定函数的值域或最值不等式法:利用基本不等式确定函数的值域或最值换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值数形结合法:利用函数图象或几何方法确定函数的值域或最值函数的单调性法【1.2.2
10、】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种 解析法:就是用数学表达式表示两个变量之间的对应关系列表法:就是列出表格来表示两个变量之间的对应关系图象法:就是用图象表示两个变量之间的对应关系(6)映射的概念设、是两个集合,如果按照某种对应法则,对于集合中任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的映射,记作给定一个集合到集合的映射,且如果元素和元素对应,那么我们把元素叫做元素的象,元素叫做元素的原象1.3函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性定义及判定方法函数的性 质定
11、义图象判定方法函数的单调性如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1 x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是增函数(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增)(4)利用复合函数如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1f(x2),那么就说f(x)在这个区间上是减函数(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个
12、增函数为减函数对于复合函数,令,若为增,为增,则为增;若为减,为减,则为增;若为增,为减,则为减;若为减,为增,则为减yxo(2)打“”函数的图象与性质分别在、上为增函数,分别在、上为减函数(3)最大(小)值定义 一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有; (2)存在,使得那么,我们称是函数的最大值,记作一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得那么,我们称是函数的最小值,记作【1.3.2】奇偶性(4)函数的奇偶性定义及判定方法函数的性 质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x,都有f(x)=f(x
13、),那么函数f(x)叫做奇函数(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x,都有f(x)=f(x),那么函数f(x)叫做偶函数(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y轴对称)若函数为奇函数,且在处有定义,则奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性相反在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数补充知识函数的图象(1)作图利用描点法作图:确定函
14、数的定义域; 化解函数解析式;讨论函数的性质(奇偶性、单调性); 画出函数的图象利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象平移变换伸缩变换 对称变换 (2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系(3)用图 函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具要重视数形结合解题的思想方法第二章 基本初等函数()2.1指数函数 【2.1.1】
15、指数与指数幂的运算(1)根式的概念如果,且,那么叫做的次方根当是奇数时,的次方根用符号表示;当是偶数时,正数的正的次方根用符号表示,负的次方根用符号表示;0的次方根是0;负数没有次方根式子叫做根式,这里叫做根指数,叫做被开方数当为奇数时,为任意实数;当为偶数时,根式的性质:;当为奇数时,;当为偶数时, (2)分数指数幂的概念正数的正分数指数幂的意义是:且0的正分数指数幂等于0正数的负分数指数幂的意义是:且0的负分数指数幂没有意义 注意口诀:底数取倒数,指数取相反数(3)分数指数幂的运算性质 【2.1.2】指数函数及其性质(4)指数函数函数名称指数函数定义0101函数且叫做指数函数图象定义域值域
16、过定点图象过定点,即当时,奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,越大图象越高;在第二象限内,越大图象越低2.2对数函数 【2.2.1】对数与对数运算(1) 对数的定义 若,则叫做以为底的对数,记作,其中叫做底数,叫做真数负数和零没有对数对数式与指数式的互化:(2)几个重要的对数恒等式,(3)常用对数与自然对数常用对数:,即;自然对数:,即(其中)(4)对数的运算性质 如果,那么加法: 减法:数乘: 换底公式:【2.2.2】对数函数及其性质(5)对数函数函数名称对数函数定义函数且叫做对数函数图象0101定义域值域过定点图象过定点,即当时,奇偶性
17、非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,越大图象越靠低;在第四象限内,越大图象越靠高(6)反函数的概念设函数的定义域为,值域为,从式子中解出,得式子如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成(7)反函数的求法确定反函数的定义域,即原函数的值域;从原函数式中反解出;将改写成,并注明反函数的定义域(8)反函数的性质 原函数与反函数的图象关于直线对称函数的定义域、值域分别是其反函数的值域、定义域若在原函数的图象上,则在反函数的图象上一般地,函数要有反函数则它必须为单调函数
18、2.3幂函数(1)幂函数的定义 一般地,函数叫做幂函数,其中为自变量,是常数(2)幂函数的图象(3)幂函数的性质图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限 过定点:所有的幂函数在都有定义,并且图象都通过点 单调性:如果,则幂函数的图象过原点,并且在上为增函数如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数当(其中互质,和),若为奇数为奇数时,则是奇
19、函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数图象特征:幂函数,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方补充知识二次函数(1)二次函数解析式的三种形式一般式: 顶点式:两根式:(2)求二次函数解析式的方法已知三个点坐标时,宜用一般式已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式若已知抛物线与轴有两个交点,且横线坐标已知时,选用两根式求更方便(3)二次函数图象的性质二次函数的图象是一条抛物线,对称轴方程为顶点坐标是当时,抛物线开口向上,函数在上递减,在上递增,当时,;当时,抛物线开口向下,函
20、数在上递增,在上递减,当时,二次函数当时,图象与轴有两个交点(4)一元二次方程根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布 设一元二次方程的两实根为,且令,从以下四个方面来分析此类问题:开口方向: 对称轴位置: 判别式: 端点函数值符号 kx1x2 x1x2k x1kx2 af(k)0 k1x1x2k2 有且仅有一个根x1(或x2)满足k1x1(或x2)k2 f(k1)f(k2)0,并同时考虑f(k
21、1)=0或f(k2)=0这两种情况是否也符合 k1x1k2p1x2p2 此结论可直接由推出 (5)二次函数在闭区间上的最值 设在区间上的最大值为,最小值为,令()当时(开口向上)若,则 若,则 若,则xy0aOabx2-=pqf(p)f(q)xy0aOabx2-=pqf(p)f(q)xy0aOabx2-=pqf(p)f(q)xy0aOabx2-=pqf(p)f(q)若,则 ,则xy0aOabx2-=pqf(p)f(q)()当时(开口向下)若,则 若,则 若,则xy0aOabx2-=pqf(p)f(q)xy0aOabx2-=pqf(p)f(q)xy0aOabx2-=pqf(p)f(q)若,则 ,
22、则xy0aOabx2-=pqf(p)f(q)xy0 L AB公理1作用:判断直线是否在平面内CBA(2)公理2:过不在一条直线上的三点,有且只有一个平面。符号表示为:A、B、C三点不共线 = 有且只有一个平面,使A、B、C。公理2作用:确定一个平面的依据。(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。PL符号表示为:P =L,且PL公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:共面直线 相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个
23、平面内,没有公共点。2 公理4:平行于同一条直线的两条直线互相平行。符号表示为:设a、b、c是三条直线=acabcb强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。公理4作用:判断空间两条直线平行的依据。3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点: a与b所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为简便,点O一般取在两直线中的一条上; 两条异面直线所成的角(0, ); 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作ab; 两条直线互相垂直,有共面垂直与异面垂直两种情形; 计算中,通常把两条异面直线所
24、成的角转化为两条相交直线所成的角。2.1.3 2.1.4 空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内 有无数个公共点(2)直线与平面相交 有且只有一个公共点(3)直线在平面平行 没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a 来表示a a=A a2.2.直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。简记为:线线平行,则线面平行。符号表示:a b = aab2.2.2 平面与平面平行的判定1、两个平面平行的判定定理:一个平
25、面内的两条交直线与另一个平面平行,则这两个平面平行。 a 符号表示: b ab = P a b2、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(3)垂直于同一条直线的两个平面平行。2.2.3 2.2.4直线与平面、平面与平面平行的性质1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。简记为:线面平行则线线平行。符号表示:aa ab= b作用:利用该定理可解决直线间的平行问题。2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。符号表示:= a ab = b作用:可以由平面与平面平行得出直线与直线平行2.3直线、平面垂直的判定及其性质2
26、.3.1直线与平面垂直的判定1、定义如果直线L与平面内的任意一条直线都垂直,我们就说直线L与平面互相垂直,记作L,直线L叫做平面的垂线,平面叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。注意点: a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。2.3.2平面与平面垂直的判定1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形A 梭 l B 2、二面角的记法:二面角-l-或-AB-3、两个平面互相垂直的判定定理:一个平
27、面过另一个平面的垂线,则这两个平面垂直。2.3.3 2.3.4直线与平面、平面与平面垂直的性质1、定理:垂直于同一个平面的两条直线平行。2性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。本章知识结构框图平面(公理1、公理2、公理3、公理4)空间直线、平面的位置关系直线与直线的位置关系平面与平面的位置关系直线与平面的位置关系第三章 直线与方程3.1直线的倾斜角和斜率 3.1。1倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定= 0.2、 倾斜角的
28、取值范围: 0180. 当直线l与x轴垂直时, = 90.3、直线的斜率:一条直线的倾斜角(90)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tan当直线l与x轴平行或重合时, =0, k = tan0=0;当直线l与x轴垂直时, = 90, k 不存在.由此可知, 一条直线l的倾斜角一定存在,但是斜率k不一定存在.4、 直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 3.1.2两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反
29、之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立即如果k1=k2, 那么一定有L1L22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即3.2.1 直线的点斜式方程1、 直线的点斜式方程:直线经过点,且斜率为 2、直线的斜截式方程:已知直线的斜率为,且与轴的交点为 3.2.2 直线的两点式方程1、直线的两点式方程:已知两点其中 y-y1/y-y2=x-x1/x-x22、直线的截距式方程:已知直线与轴的交点为A,与轴的交点为B,其中3.2.3 直线
30、的一般式方程1、直线的一般式方程:关于的二元一次方程(A,B不同时为0)2、各种直线方程之间的互化。3.3直线的交点坐标与距离公式3.3.1两直线的交点坐标1、给出例题:两直线交点坐标L1 :3x+4y-2=0 L1:2x+y +2=0 解:解方程组 得 x=-2,y=2 所以L1与L2的交点坐标为M(-2,2)3.3.2 两点间距离两点间的距离公式3.3.3 点到直线的距离公式1点到直线距离公式:点到直线的距离为:2、两平行线间的距离公式:已知两条平行线直线和的一般式方程为:,则与的距离为第四章 圆与方程4.1.1 圆的标准方程1、圆的标准方程:圆心为A(a,b),半径为r的圆的方程2、点与
31、圆的关系的判断方法:(1),点在圆外 (2)=,点在圆上(3),点在圆内4.1.2 圆的一般方程1、圆的一般方程: 2、圆的一般方程的特点: (1)x2和y2的系数相同,不等于0没有xy这样的二次项 (2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系设直线:,圆:,圆的半径为,圆心到直线的距离为,则判别直线与圆的位置关系的依据有以下几点:(1)当时,直线与圆相
32、离;(2)当时,直线与圆相切;(3)当时,直线与圆相交;4.2.2 圆与圆的位置关系两圆的位置关系设两圆的连心线长为,则判别圆与圆的位置关系的依据有以下几点:(1)当时,圆与圆相离;(2)当时,圆与圆外切;(3)当时,圆与圆相交;(4)当时,圆与圆内切;(5)当时,圆与圆内含;4.2.3 直线与圆的方程的应用1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论4.3.1空间直角坐标系1、点M对应着唯一确定的有序实数组,、分别是P、Q、R在、轴上的坐标2、有序实数组,对应着空间直角坐标系中的一点3、空间中任意点M的坐标都可以用有序实数组来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M,叫做点M的横坐标,叫做点M的纵坐标,叫做点M的竖坐标。4.3.2空间两点间的距离公式1、空间中任意一点到点之间的距离公式