北师大版八年级数学上册第五章二元一次方程组与一次函数综合练习题(有答案)(DOC 32页).doc

上传人(卖家):2023DOC 文档编号:5536452 上传时间:2023-04-24 格式:DOC 页数:32 大小:584.50KB
下载 相关 举报
北师大版八年级数学上册第五章二元一次方程组与一次函数综合练习题(有答案)(DOC 32页).doc_第1页
第1页 / 共32页
北师大版八年级数学上册第五章二元一次方程组与一次函数综合练习题(有答案)(DOC 32页).doc_第2页
第2页 / 共32页
北师大版八年级数学上册第五章二元一次方程组与一次函数综合练习题(有答案)(DOC 32页).doc_第3页
第3页 / 共32页
北师大版八年级数学上册第五章二元一次方程组与一次函数综合练习题(有答案)(DOC 32页).doc_第4页
第4页 / 共32页
北师大版八年级数学上册第五章二元一次方程组与一次函数综合练习题(有答案)(DOC 32页).doc_第5页
第5页 / 共32页
点击查看更多>>
资源描述

1、二元一次方程组与一次函数综合复习一选择题1如图,射线OC的端点O在直线AB上,AOC的度数比BOC的2倍多10度设AOC和BOC的度数分别为x,y,则下列正确的方程组为()A B C D2甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示有下列说法:A、B之间的距离为1200m;甲行走的速度是乙的1.5倍;b960;a34以上结论正确的有()ABCD3小带和小路两个人开车从A城出发匀速行驶至B城在整个行驶过程中,小带和小路两人的车离开A城的距离y(千米)与

2、行驶的时间t(小时)之间的函数关系如图所示有下列结论;A、B两城相距300千米;小路的车比小带的车晚出发1小时,却早到1小时;小路的车出发后2.5小时追上小带的车;当小带和小路的车相距50千米时,t或t其中正确的结论有()ABCD二填空题4方程组解的情况是 ,则一次函数y22x与y52x图象之间的位置关系是 5如图所示,在直角坐标系中,矩形OABC的顶点B的坐标为(12,5),直线恰好将矩形OABC分成面积相等的两部分那么b 6如图,平面直角坐标系中,已知点P(2,2),C为y轴正半轴上一点,连接PC,线段PC绕点P顺时针旋转90至线段PD,过点D作直线ABx轴,垂足为B,直线AB与直线OP交

3、于点A,且BD4AD,直线CD与直线OP交于点Q,则点Q的坐标为 7如图,把RtABC放在直角坐标系内,其中CAB90,BC5,点A、B的坐标分别为(1,0)、(4,0),将ABC沿x轴向右平移,当点C落在直线y2x6上时,线段BC扫过的面积为 8如图,在平面直角坐标系xOy中,直线与x轴交于点A,与y轴交于点B,将AOB沿过点A的直线折叠,使点B落在x轴负半轴上,记作点C,折痕与y轴交点交于点D,则点C的坐标为 ,点D的坐标为 三解答题9已知方程组,求:(1)当m为何值时,x,y的符号相反,绝对值相等;(2)当m为何值时,x比y大110阅读下列解方程组的方法,然后回答问题解方程组 解:由得2

4、x+2y2,即x+y1,16得16x+16y16,得x1,从而可得y2所以原方程组的解是 请你仿上面的解法解方程组 11阅读材料:善于思考的小军在解方程组时,采用了一种“整体代入”的解法:解:由得xy1将代入得:41y5,即y1把y1代入得x0,方程组的解为 请你模仿小军的“整体代入”法解方程组,解方程12如图所示,矩形OABC中,OA4,OC2,D是OA的中点,连接AC、DB,交于点E,以O为原点,OA所在的直线为x轴,建立坐标系(1)分别求出直线AC和BD的解析式;(2)求E点的坐标;(3)求DEA的面积13如图,直线l与x轴、y轴分别交于点A(3,0)、点B(0,2),以线段AB为直角边

5、在第一象限内作等腰直角三角形ABC,BAC90,点P(1,a)为坐标系中的一个动点(1)请直接写出直线l的表达式;(2)求出ABC的面积;(3)当ABC与ABP面积相等时,求实数a的值14一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共有多少个子女?15一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元,问:(1)甲、乙两组单独工作一天,商店各付多少元?(2)设工作总量为单位1,单独请哪

6、组,商店所付费用较少?(3)若装修完后,商店每天可盈利200元,你认为请哪个装修组施工能使商店的利益最大化?说说你的理由16甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地如图,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数图象;折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数图象;请根据图象解答下列问题:(1)货车离甲地距离y(千米)与时间x(小时)之间的函数式为 ;(2)当轿车与货车相遇时,求此时x的值;(3)在两车行驶过程中,当轿车与货车相距20千米时,求x的值17甲、乙两车分别从A、B两地同时出发,在同一条公路上,匀速行驶,相向而

7、行,到两车相遇时停止甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B地行驶,两车之间的路程y(千米)与出发后所用时间x(小时)之间的函数关系如图所示(1)求甲、乙两车行驶的速度V甲、V乙(2)求m的值(3)若甲车没有故障停车,求可以提前多长时间两车相遇18张庄甲、乙两家草莓采摘园的草莓销售价格相同,“春节期间”,两家采摘园将推出优惠方案,甲园的优惠方案是:游客进园需购买门票,采摘的草莓六折优惠;乙园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠优惠期间,某游客的草莓采摘量为x(千克),在甲园所需总费用为y甲(元),在乙园所需总费用为y乙(元)

8、,y甲、y乙与x之间的函数关系如图所示,折线OAB表示y乙与x之间的函数关系(1)甲采摘园的门票是 元,两个采摘园优惠前的草莓单价是每千克 元;(2)当x10时,求y乙与x的函数表达式;(3)游客在“春节期间”采摘多少千克草莓时,甲、乙两家采摘园的总费用相同19甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟 米,乙在A地时距地面的高度b为 米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(

9、3)登山多长时间时,甲、乙两人距地面的高度差为70米?20温度与我们的生活息息相关,如图是一个温度计实物示意图,左边的刻度是摄氏温度(),右边的刻度是华氏温度()设摄氏温度为x()华氏温度为y(),则y是x的一次函数,通过观察我们发现,温度计上的摄氏温度为0时,华氏温度为32;摄氏温度为20时,华氏温度为4请根据以上信息,解答下列问题(1)仔细观察图中数据,试求出y与x的函数关系式;(2)当摄氏温度为5时,华氏温度为多少?(3)当华氏温度为59时,摄氏温度为多少?21甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列

10、问题:(1)甲登山上升的速度是每分钟 米,乙在A地时距地面的高度b为 米(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式(3)登山多长时间时,甲、乙两人距地面的高度差为50米?22某商店销售A型和B型两种型号的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍设购进A型电脑x台,这100台电脑的销售总利润为y元(1)求y与x的关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售利润最大?(3)若限定商店最

11、多购进A型电脑60台,则这100台电脑的销售总利润能否为13600元?若能,请求出此时该商店购进A型电脑的台数;若不能,请求出这100台电脑销售总利润的范围23如图,直线yx+1与x轴,y轴分别交于B,A两点,动点P在线段AB上移动,以P为顶点作OPQ45交x轴于点Q(1)求点A和点B的坐标;(2)比较AOP与BPQ的大小,说明理由(3)是否存在点P,使得OPQ是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由24甲、乙商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的

12、部分按95%收费,顾客到哪家商场购物花费少?25如图1,已知直线y2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰RtABC(1)求点C的坐标,并求出直线AC的关系式(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若ADAC,求证:BEDE(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由26一辆客车从甲地开往乙地,一辆轿车从乙地开往甲地,两车同时出发,两车行驶x小时后,记客车离甲地的距离为y1千米,轿车离甲地的距离为y2千

13、米,y1、y2关于x的函数图象如图(1)根据图象,直接写出y1、y2关于x的函数关系式;(2)当两车相遇时,求此时客车行驶的时间;(3)两车相距200千米时,求客车行驶的时间27如图,直线l1:y1x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2x+b过点P(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动设点Q的运动时间为t秒请写出当点Q在运动过程中,APQ的面积S与t的函数关系式;求出t为多少时,APQ的面积小于3;是否存在t的值,使APQ为等腰三角形?若存在,请求出t的值;若不存在,请

14、说明理由28如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA10OC8在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处(1)求CE和OD的长;(2)求直线DE的表达式;(3)直线ykx+b与DE平行,当它与矩形OABC有公共点时,直接写出b的取值范围29如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动(1)求A、B两点的坐标;(2)求COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时COMAOB,并求此时M点的坐标30如图,直线

15、ykx+6与x、y轴分别交于E、F点E坐标为(8,0),点A的坐标为(6,0),P(x,y)是直线ykx+6上的一个动点(1)求k的值;(2)若点P是第二象限内的直线上的一个动点,当点P运动过程中,试写出三角形OPA的面积S与x的函数关系式,并写出自变量x的取值范围;(3)探究:当P运动到什么位置时,三角形OPA的面积为,并说明理由31如图,一次函数yx+1的图象与x轴、y轴分别交于点A、B,以线段AB为边在第一象限内作等边ABC(1)求ABC的面积;(2)如果在第二象限内有一点P(a,),请用含a的式子表示四边形ABPO的面积,并求出当ABP的面积与ABC的面积相等时a的值32如图:在平面直

16、角坐标系xOy中,已知正比例函数y与一次函数yx+7的图象交于点A(1)求点A的坐标;(2)在y轴上确定点M,使得AOM是等腰三角形,请直接写出点M的坐标;(3)如图、设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交y和yx+7的图象于点B、C,连接OC,若BCOA,求ABC的面积及点B、点C的坐标;(4)在(3)的条件下,设直线yx+7交x轴于点D,在直线BC上确定点E,使得ADE的周长最小,请直接写出点E的坐标33如图,四边形OABC是矩形,点A、C在坐标轴上,ODE是OCB绕点O顺时针旋转90得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、O

17、C的长是方程x26x+80的两个根,且OCBC(1)求直线BD的解析式;(2)求OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由34某天早晨,张强从家跑步去体育锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走)如图是两人离家的距离y(米)与张强出发的时间x(分)之间的函数图象,根据图象信息解答下列问题:(1)求张强返回时的速度;(2)妈妈比按原速返回提前多少分钟到家?(3)请直接写出张强

18、与妈妈何时相距1000米?参考答案一选择题1解:根据AOC的度数比BOC的2倍多10,得方程x2y+10;根据AOC和BOC组成了平角,得方程x+y180列方程组为故选:B2解:当x0时,y1200,A、B之间的距离为1200m,结论正确;乙的速度为1200(244)60(m/min),甲的速度为1200126040(m/min),60401.5,乙行走的速度是甲的1.5倍,结论错误;b(60+40)(24412)800,结论错误;a120040+434,结论正确故结论正确的有故选:A3解:由图象可知A、B两城市之间的距离为300km,小带行驶的时间为5小时,而小路是在甲出发1小时后出发的,且

19、用时3小时,即比早小带到1小时,都正确;设小带车离开A城的距离y与t的关系式为y小带kt,把(5,300)代入可求得k60,y小带60t,设小路车离开A城的距离y与t的关系式为y小路mt+n,把(1,0)和(4,300)代入可得 ,解得:,y小路100t100,令y小带y小路,可得:60t100t100,解得:t2.5,即小带、小路两直线的交点横坐标为t2.5,此时小路出发时间为1.5小时,即小路车出发1.5小时后追上小带车,不正确;令|y小带y小路|50,可得|60t100t+100|50,即|10040t|50,当10040t50时,可解得t,当10040t50时,可解得t,又当t时,y小

20、带50,此时小路还没出发,当t时,小路到达B城,y小带250;综上可知当t的值为 或或或时,两车相距50千米,不正确;故选:C二填空题4解:方程组解的情况是无解,则一次函数y22x与y52x图象之间的位置关系是平行故答案为无解,平行5解:将矩形OABC分成面积相等的两部分,直线经过矩形的中心,B点坐标为B(12,5),矩形中心的坐标为(6,),6+b,解得b1故答案为:16解:过点P作PEOC于E,EP的延长线交AB于FABOB,OBFEOBFEO90,四边形EOBF是矩形,P(2,2),OEPEBF2,CPD90,CPE+DPF90,ECP+CPE90,ECPDPF,在CPE和PDF中,CP

21、EPDF(AAS),DFPE2,BDBF+DF4,BD4AD,AD1,ABOB5,CEPF3,D(5,4),C(0,5),设直线CD的解析式为ykx+b则有,解得,直线CD的解析式为yx+5,由解得,点Q的坐标为(,)故答案为(,)7解:如图所示点A、B的坐标分别为(1,0)、(4,0),AB3CAB90,BC5,AC4AC4点C在直线y2x6上,2x64,解得 x5即OA5CC514SBCCB4416即线段BC扫过的面积为16故答案为168解:由折叠的性质得:ADBADC,ABAC,BDCD,对于直线yx+3,令x0,得到y3;令y0,得到x4,OA4,OB3,在RtAOB中,根据勾股定理得

22、:AB5,OCACOAABOA541,即C(1,0);在RtCOD中,设CDBDx,则OD3x,根据勾股定理得:x2(3x)2+1,解得:x,OD,即D(0,)故答案为:(1,0);(0,)三解答题9解:方程组整理解得:x2,y0.5m+3.5,(1)当x,y的符号相反,绝对值相等,可得0.5m+3.52,解得:m3;(2)当x比y大1,可得:0.5m+3.53解得:m1310解:得:3x+3y3,即x+y1,2013得:2013x+2013y2013,得:x1,把x1代入得:y2,则方程组的解为11解:将代入得:1+2y9,即y4,将y4代入得:x7,原方程组的解为:12解:(1)设直线AC

23、的解析式为:ykx+b,由题意可得:A(4,0),C(0,2),解得:,直线AC的解析式为:yx+2,设直线BD的解析式为:ymx+n,由题意可得:B(4,2),D(2,0),解得:直线BD的解析式为:yx2;(2)由题意得:,解得:,E点的坐标为(,);(3)DEA的面积213解:(1)设直线AB所在的表达式为:ykx+b,则,解得:,故直线l的表达式为:;(2)在RtABC中,由勾股定理得:AB2OA2+OB232+2213ABC为等腰直角三角形,SABCAB2;(3)连接BP,PO,PA,则:若点P在第一象限时,如图1:SABO3,SAPOa,SBOP1,SABPSBOP+SAPOSAB

24、O,即,解得;若点P在第四象限时,如图2:SABO3,SAPOa,SBOP1,SABPSAOB+SAPOSBOP,即,解得a3;故:当ABC与ABP面积相等时,实数a的值为或314解:设夫妇现在的年龄和为x,子女年龄和为y,共有n个子女,由夫妇现在年龄的和是其子女年龄和的6倍可知:x6y,由他们两年前年龄和是子女两年前年龄和的10倍可知:x2210(y2n),由6年后他们的年龄和是子女6年后年龄和的3倍可知:x+263(y+6n),列出方程组,将x6y代入方程组中解得:n3答:这对夫妇共有3个子女15解:(1)设甲组单独工作一天商店应付x元,乙组单独工作一天商店应付y元,由题意可得:,解得:,

25、答:甲组单独工作一天商店应付300元,乙组单独工作一天商店应付140元,(2)设甲组每天工作效率为m,乙组每天工作效率为n,由题意可得:,解得:,甲组单独完成装修需 (天),乙组单独完成装修需 (天),单独请甲组需付300123600(元),单独请乙组需付140243360(元),36003360,答:单独请乙组费用较少,(3)由第(2)已求得:甲组单独做12天完成,商店需付款123003600(元),乙组单独做24天完成,商店需付款241403360(元),但甲组比乙组早12天完工,商店12天的利润为200122400(元),即开支为360024001200元3360元,答:选择甲装修组施工

26、能使商店的利益最大化16解:(1)设货车离甲地距离y(干米)与时间x(小时)之间的函数式为yk1x,根据题意得5k1300,解得k160,y60x,即货车离甲地距离y(干米)与时间x(小时)之间的函数式为y60x;故答案为:y60x;(2)设CD段函数解析式为ykx+b(k0)(2.5x4.5)C(2.5,80),D(4.5,300)在其图象上,解得,CD段函数解析式:y110x195(2.5x4.5);解方程组,解得,当x3.9时,轿车与货车相遇;(3)8060,即点B的坐标(,0),轿车开始的速度为:(千米/时),当x2.5时,y货150,两车相距150807020,由题意或60x(110

27、x195)20或110x19560x20,解得x3.5或4.3小时答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时17解:(1)由图可得,解得,答:甲的速度是60km/h 乙的速度是80km/h;(2)m(1.51)(60+80)0.514070,即m的值是70;(3)甲车没有故障停车,则甲乙相遇所用的时间为:180(60+80),若甲车没有故障停车,则可以提前:1.5(小时)两车相遇,即若甲车没有故障停车,可以提前小时两车相遇18解:(1)由图象可得,甲采摘园的门票是60元,两个采摘园优惠前的草莓单价是:3001030(元/千克),故答案为:60,30;(2)当x

28、10时,设y乙与x的函数表达式是y乙kx+b,得,即当x10时,y乙与x的函数表达式是y乙12x+180;(3)由题意可得,y甲60+300.6x18x+60,当0x10时,令18x+6030x,得x5,当x10时,令12x+18018x+60,得x20,答:采摘5千克或20千克草莓时,甲、乙两家采摘园的总费用相同19:(1)甲登山上升的速度是:(300100)2010(米/分钟),b151230故答案为:10;30;(2)当0x2时,y15x;当x2时,y30+103(x2)30x30当y30x30300时,x11乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y;(3

29、)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y10x+100(0x20)当10x+100(30x30)70时,解得:x3;当30x30(10x+100)70时,解得:x10;当300(10x+100)70时,解得:x13答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米20解:(1)设y关于x的函数关系式为ykx+b,由温度计的示数得x0,y32;x20时,y68所以,解得:故y关于x的函数关系式为yx+32;(2)当x5时,y(5)+3223即当摄氏温度为5时,华氏温度为23;(3)令y59,则有x+3259,解得:x15故当华氏温度为59时,

30、摄氏温度为1521解:(1)(300100)2010(米/分钟),b151230故答案为:10;30(2)当0x2时,y15x;当x2时,y30+103(x2)30x30当y30x30300时,x11乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y10x+100(0x20)当10x+100(30x30)50时,解得:x4;当30x30(10x+100)50时,解得:x9;当300(10x+100)50时,解得:x15答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米22解:(

31、1)由题意可得:y120x+140(100x)20x+14000;(2)据题意得,100x3x,解得x25,y20x+14000,200,y随x的增大而减小,x为正整数,当x25时,y取最大值,则100x75,即商店购进25台A型电脑和75台B型电脑的销售利润最大;(3)据题意得,y120x+140(100x),即y20x+14000 (25x60)当y13600时,解得x20,不符合要求y随x的增大而减小,当x25时,y取最大值,即商店购进25台A型电脑和75台B型电脑的销售利润最大,此时y13500元当x60时,y取得最小值,此时y12800元故这100台电脑销售总利润的范围为12800y

32、1350023解:(1)直线yx+1与x轴,y轴分别交于A,B两点,令x0,则y0+11,A(0,1),令y0,则0x+1,解得:x1B(1,0)(2)AOPBPQ理由如下:过P点作PEOA交OA于点E,A(0,1),B(1,0)OAOB1,OABOBA45,PEOA,APE45,OPQ45,OPE+BPQ90,AOP+OPE90,AOPBPQ(3)OPQ可以是等腰三角形理由如下:如图,过P点PEOA交OA于点E,()若OPOQ,则OPQOQPOPQ,POQ90,点P与点A重合,点P坐标为(0,1),()若QPQO,则OPQQOP45,所以PQQO,可设P(x,x)代入yx+1得x,点P坐标为

33、(,),() 若POPQOPQ+12+3,而OPQ345,12,又3445,AOPBPQ(AAS),PBOA1,AP1由勾股定理求得PEAE1,EO,点P坐标为(1,),点P坐标为(0,1),(,)或(1,)时,OPQ是等腰三角形24解:设在甲商场购买x元的花费为W甲元,在乙商场购买的花费为W乙元,由题意,得W甲100+(x100)0.90.9x+10(x100)W乙50+0.95(x50)0.95x+2.5(x50)当W甲W乙时,0.9x+100.95x+2.5,x150W甲W乙时,0.9x+100.95x+2.5,x150W甲W乙时,0.9x+100.95x+2.5,x150综上所述:当x

34、150时,在乙商场购买优惠些,当x150时,在甲、乙两商场购买一样优惠,当x150时,在甲商场购买优惠些25解:(1)如图1,作CQx轴,垂足为Q,OBA+OAB90,OBA+QBC90,OABQBC,又ABBC,AOBQ90,ABOBCQ,BQAO2,OQBQ+BO3,CQOB1,C(3,1),由A(0,2),C(3,1)可知,直线AC:yx+2;(2)如图2,作CHx轴于H,DFx轴于F,DGy轴于G,ACAD,ABCB,BCBD,BCHBDF,BFBH2,OFOB1,DGOB,BOEDGE,BEDE;(3)如图3,直线BC:yx,P(,k)是线段BC上一点,P(,),由yx+2知M(6,

35、0),BM5,则SBCM假设存在点N使直线PN平分BCM的面积,则BN,BN,ON,BNBM,点N在线段BM上,N(,0)26解:(1)设y1kx,则将(10,600)代入得出:60010k,解得:k60,y160x (0x10),设y2ax+b,则将(0,600),(6,0)代入得出:解得:y2100x+600 (0x6);(2)当两车相遇时,y1y2,即60x100x+600解得:;当两车相遇时,求此时客车行驶了小时;(3)若相遇前两车相距200千米,则y2y1200,100x+60060x200,解得:,若相遇后相距200千米,则y1y2200,即60x+100x600200,解得:x5

36、两车相距200千米时,客车行驶的时间为小时或5小时27解;(1)点P(m,3)为直线l1上一点,3m+2,解得m1,点P的坐标为(1,3),把点P的坐标代入y2x+b得,3(1)+b,解得b;(2)b,直线l2的解析式为yx+,C点的坐标为(7,0),由直线l1:y1x+2可知A(2,0),当Q在A、C之间时,AQ2+7t9t,SAQ|yP|(9t)3t;当Q在A的右边时,AQt9,SAQ|yP|(t9)3t;即APQ的面积S与t的函数关系式为St+或St;S3,t+3或t3解得7t9或9t11存在;设Q(t7,0),当PQPA时,则(t7+1)2+(03)2(2+1)2+(03)2(t6)2

37、32,解得t3或t9(舍去),当AQPA时,则(t72)2(2+1)2+(03)2(t9)218,解得t9+3或t93;当PQAQ时,则(t7+1)2+(03)2(t72)2,(t6)2+9(t9)2,解得t6故当t的值为3或9+3或93或6时,APQ为等腰三角形28解:(1)依题意可知,折痕AD是四边形OAED的对称轴,在RtABE中,AEAO10,AB8,BE6,CE1064,在RtDCE中,DC2+CE2DE2,又DEOD,(8OD)2+42OD2,OD5(2)CE4,E(4,8)OD5,D(0,5),设直线DE的解析式为ymx+n,解得,直线DE的解析式为yx+5(3)直线ykx+b与

38、DE平行,直线为yx+b,当直线经过A点时,010+b,则b,当直线经过C点时,则b8,当直线ykx+b与矩形OABC有公共点时,b8且b529解:(1)对于直线AB:,当x0时,y2;当y0时,x4,则A、B两点的坐标分别为A(4,0)、B(0,2);(2)C(0,4),A(4,0)OCOA4,当0t4时,OMOAAM4t,SOCM4(4t)82t;当t4时,OMAMOAt4,SOCM4(t4)2t8;(3)分为两种情况:当M在OA上时,OBOM2,COMAOBAMOAOM422动点M从A点以每秒1个单位的速度沿x轴向左移动2个单位,所需要的时间是2秒钟;M(2,0),当M在AO的延长线上时

39、,OMOB2,则M(2,0),此时所需要的时间t4(2)/16秒,即M点的坐标是(2,0)或(2,0)30解:(1)点E(8,0)在直线ykx+6上,08k+6,k;(2)k,直线的解析式为:yx+6,点P(x,y)是第二象限内的直线yx+6上的一个动点,yx+60,8x0点A的坐标为(6,0),OA6,SOA|yP|6(x+6)x+18三角形OPA的面积S与x的函数关系式为:Sx+18(8x0);(3)三角形OPA的面积OA|y|,6|y|,解得|y|,y当y时,x+6,解得x,故P(,);当y时,x+6,解得x,故P(,);综上可知,当点P的坐标为P(,)或P(,)时,三角形OPA的面积为

40、31解:(1)yx+1与x轴、y轴交于A、B两点,A(,0),B(0,1)AOB为直角三角形,AB2SABC2sin60(2)S四边形ABPOSABO+SBOPOAOB+OBh1+1|a|P在第二象限,S四边形ABPO,SABPSABPOSAOP()OASABPSABCa32解:(1)联立得:,解得:,则点A的坐标为(3,4);(2)根据勾股定理得:OA5,如图1所示,分四种情况考虑:当OM1OA5时,M1(0,5);当OM2OA5时,M2(0,5);当AM3OA5时,M3(0,8);当OM4AM4时,M4(0,),综上,点M为(0,5)、(0,5)、(0,8)、(0,);(3)设点B(a,a),C(a,a+7),BCOA514,a(a+7)14,解得:a9,过点A作AQBC,如图2所示,SABCBCAQ14(93)42,当a9时,a912,a+79+72,点B(9,12)、C(9,2);(4)如图3所示,作出D关于直线BC的对称点D,连接AD,与直线BC交于点E,连接DE,此时ADE周长最小,对于直线yx+7,令y0,得到x7,即D(7,0),由(3)得到直线BC为直线x9,D(11,0),设直线AD解析式为ykx+b,把A与D坐标代入得:,解得:,直线AD解析式为yx+,令

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中 > 数学 > 北师大版(2024) > 八年级上册
版权提示 | 免责声明

1,本文(北师大版八年级数学上册第五章二元一次方程组与一次函数综合练习题(有答案)(DOC 32页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|