1、解直角三角形(三角函数应用)1、(绵阳市2018年)如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角为60,又从A点测得D点的俯角为30,若旗杆底点G为BC的中点,则矮建筑物的高CD为( A )A20米 B米 C米 D米解析GE/AB/CD,BC=2GC,GE=15米,AB=2GE=30米,AF=BC=ABcotACB=30cot60=10米,DF=AFtan30=10=10米,CD=AB-DF=30-10=20米。2、(2018杭州)在RtABC中,C=90,若AB=4,sinA=,则斜边上的高等于()ABCD考点:解直角三角形专题:计算题分析:在
2、直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高解答:解:根据题意画出图形,如图所示,在RtABC中,AB=4,sinA=,BC=ABsinA=2.4,根据勾股定理得:AC=3.2,SABC=ACBC=ABCD,CD=故选B点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键3、(2018绥化)如图,在ABC中,ADBC于点D,AB=8,ABD=30,CAD=45,求BC的长考点:解直角三角形分析:首先解RtABD,求出AD、BD的长度,再解RtAD
3、C,求出DC的长度,然后由BC=BD+DC即可求解解答:解:ADBC于点D,ADB=ADC=90在RtABD中,AB=8,ABD=30,AD=AB=4,BD=AD=4在RtADC中,CAD=45,ADC=90,DC=AD=4,BC=BD+DC=4+4点评:本题考查了解直角三角形的知识,属于基础题,解答本题的关键是在直角三角形中利用解直角三角形的知识求出BD、DC的长度4、(2018鄂州)著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,
4、随着木棒的滑动就可以画出一个圆来若AB=20cm,则画出的圆的半径为10cm考点:直角三角形斜边上的中线分析:连接OP,根据直角三角形斜边上的中线等于斜边的一半可得OP的长,画出的圆的半径就是OP长解答:解:连接OP,AOB是直角三角形,P为斜边AB的中点,OP=AB,AB=20cm,OP=10cm,故答案为:10点评:此题主要考查了直角三角形的性质,关键是掌握直角三角形斜边上的中线等于斜边的一半5、(2018安顺)在RtABC中,C=90,BC=8,则ABC的面积为 考点:解直角三角形专题:计算题分析:根据tanA的值及BC的长度可求出AC的长度,然后利用三角形的面积公式进行计算即可解答:解
5、:tanA=,AC=6,ABC的面积为68=24故答案为:24点评:本题考查解直角三角形的知识,比较简单,关键是掌握在直角三角形中正切的表示形式,从而得出三角形的两条直角边,进而得出三角形的面积6、(11-4解直角三角形的实际应用2018东营中考)某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60,在教学楼三楼D处测得旗杆顶部的仰角为30,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB的高度为 米. 15. 9.解析:过B作BECD于点E,设旗杆AB的高度为x,在中,所以,在中,所以,因为CE=AB=x,所以,所以x=9,故旗杆的高度
6、为9米.7、(2018常德)如图,在ABC中,AD是BC边上的高,AE是BC边上的中线,C=45,sinB=,AD=1(1)求BC的长;(2)求tanDAE的值考点:解直角三角形分析:(1)先由三角形的高的定义得出ADB=ADC=90,再解RtADC,得出DC=1;解RtADB,得出AB=3,根据勾股定理求出BD=2,然后根据BC=BD+DC即可求解;(2)先由三角形的中线的定义求出CE的值,则DE=CECD,然后在RtADE中根据正切函数的定义即可求解解答:解:(1)在ABC中,AD是BC边上的高,ADB=ADC=90在ADC中,ADC=90,C=45,AD=1,DC=AD=1在ADB中,A
7、DB=90,sinB=,AD=1,AB=3,BD=2,BC=BD+DC=2+1;(2)AE是BC边上的中线,CE=BC=+,DE=CECD=,tanDAE=点评:本题考查了三角形的高、中线的定义,勾股定理,解直角三角形,难度中等,分别解RtADC与RtADB,得出DC=1,AB=3是解题的关键8、(13年山东青岛、20)如图,马路的两边CF、DE互相平行,线段CD为人行横道,马路两侧的A、B两点分别表示车站和超市。CD与AB所在直线互相平行,且都与马路两边垂直,马路宽20米,A,B相距62米,A=67,B=37(1)求CD与AB之间的距离;(2)某人从车站A出发,沿折线ADCB去超市B,求他沿
8、折线ADCB到达超市比直接横穿马路多走多少米(参考数据:, ,)解析:9、(2018益阳)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,PAB=38.5,PBA=26.5请帮助小张求出小桥PD的长并确定小桥在小道上的位置(以A,B为参照点,结果精确到0.1米)(参考数据:sin38.5=0.62,cos38.5=0.78,tan38.5=0.80,sin26.5=0.45,cos26.5=0.89,tan26.5=0.50)考点:解直角三角形的应用专题:应用题分析:设PD=x米,在RtPA
9、D中表示出AD,在RtPDB中表示出BD,再由AB=80.0米,可得出方程,解出即可得出PD的长度,继而也可确定小桥在小道上的位置解答:解:设PD=x米,PDAB,ADP=BDP=90,在RtPAD中,tanPAD=,AD=x,在RtPBD中,tanPBD=,DB=2x,又AB=80.0米,x+2x=80.0,解得:x24.6,即PD24.6米,DB=2x=49.2答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米点评:本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数表示出相关线段的长度,难度一般10、(2018娄底)2018年3月,某煤矿发生瓦斯爆炸,
10、该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象已知A、B两点相距4米,探测线与地面的夹角分别是30和45,试确定生命所在点C的深度(精确到0.1米,参考数据:)考点:解直角三角形的应用分析:过点C作CDAB于点D,设CD=x,在RtACD中表示出AD,在RtBCD中表示出BD,再由AB=4米,即可得出关于x的方程,解出即可解答:解:过点C作CDAB于点D,设CD=x,在RtACD中,CAD=30,则AD=CD=x,在RtBCD中,CBD=45,则BD=CD=x,由题意得,xx=4,解得:x=2(+1)5.5答:生命所在点C的深度为5.5米点评:本
11、题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数知识表示出相关线段的长度,注意方程思想的运用11、(2018包头)如图,一根长6米的木棒(AB),斜靠在与地面(OM)垂直的墙(ON)上,与地面的倾斜角(ABO)为60当木棒A端沿墙下滑至点A时,B端沿地面向右滑行至点B(1)求OB的长;(2)当AA=1米时,求BB的长考点:勾股定理的应用;解直角三角形的应用分析:(1)由已知数据解直角三角形AOB即可;(2)首先求出OA的长和OA的长,再根据勾股定理求出OB的长即可解答:解:(1)根据题意可知:AB=6,ABO=60,AOB=90,在RtAOB中,cosABO=,OB=A
12、BcosABO=6cos60=3米,OB的长为3米;(2)根据题意可知AB=AB=6米,在RtAOB中,sinABO=,OA=ABsinABO=6sin60=9米,OA=OAAA,AA=1米,OA=8米,在RtAOB中,OB=2米,BB=OBOB=(23)米点评:本题考查了勾股定理的应用和特殊角的锐角三角函数,是中考常见题型12、(2018呼和浩特)如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线ACB行驶,现开通隧道后,汽车直接沿直线AB行驶已知AC=10千米,A=30,B=45则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)考点:解直角三角形的应用分析:过
13、C作CDAB于D,在RtACD中,根据AC=10,A=30,解直角三角形求出AD、CD的长度,然后在RtBCD中,求出BD、BC的长度,用AC+BC(AD+BD)即可求解解答:解:过C作CDAB于D,在RtACD中,AC=10,A=30,DC=ACsin30=5,AD=ACcos30=5,在RtBCD中,B=45,BD=CD=5,BC=5,则用AC+BC(AD+BD)=10+5(5+5)=5+55(千米)答:汽车从A地到B地比原来少走(5+55)千米点评:本题考查了解直角三角形的应用,难度适中,解答本题的关键是作三角形的高建立直角三角形幷解直角三角形13、(2018巴中)2018年4月20日,
14、四川雅安发生里氏7.0级地震,救援队救援时,利用生命探测仪在某建筑物废墟下方探测到点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距4米,探测线与地面的夹角分别为30和60,如图所示,试确定生命所在点C的深度(结果精确到0.1米,参考数据1.41,1.73)考点:解直角三角形的应用分析:过点C作CDAB交AB于点D,则CAD=30,CBD=60,在RtBDC中,CD=BD,在RtADC中,AD=CD,然后根据AB=ADBD=4,即可得到CD的方程,解方程即可解答:解:如图,过点C作CDAB交AB于点D探测线与地面的夹角为30和60,CAD=30,CBD=60,在RtBDC中,tan60=,
15、BD=,在RtADC中,tan30=,AD=,AB=ADBD=4,=4,CD=23.5(米)答:生命所在点C的深度大约为3.5米点评:本题考查了解直角三角形的应用,难度适中,解答本题的关键是构造直角三角形,解直角三角形,也考查了把实际问题转化为数学问题的能力14、(2018舟山)某学校的校门是伸缩门(如图1),伸缩门中的每一行菱形有20个,每个菱形边长为30厘米校门关闭时,每个菱形的锐角度数为60(如图2);校门打开时,每个菱形的锐角度数从60缩小为10(如图3)问:校门打开了多少米?(结果精确到1米,参考数据:sin50.0872,cos50.9962,sin100.1736,cos100.
16、9848)考点:解直角三角形的应用;菱形的性质分析:先求出校门关闭时,20个菱形的宽即大门的宽;再求出校门打开时,20个菱形的宽即伸缩门的宽;然后将它们相减即可解答:解:如图,校门关闭时,取其中一个菱形ABCD根据题意,得BAD=60,AB=0.3米在菱形ABCD中,AB=AD,BAD是等边三角形,BD=AB=0.3米,大门的宽是:0.3206(米);校门打开时,取其中一个菱形A1B1C1D1根据题意,得B1A1D1=10,A1B1=0.3米在菱形A1B1C1D1中,A1C1B1D1,B1A1O1=5,在RtA1B1O1中,B1O1=sinB1A1O1A1B1=sin50.3=0.02616(
17、米),B1D1=2B1O1=0.05232米,伸缩门的宽是:0.0523220=1.0464米;校门打开的宽度为:61.0464=4.95365(米)故校门打开了5米点评:本题考查了菱形的性质,解直角三角形的应用,难度适中解题的关键是把实际问题转化为数学问题,只要把实际问题抽象到解直角三角形中,一切将迎刃而解15、(2018绍兴)如图,伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞架所成的角BAC,当伞收紧时,结点D与点M重合,且点A、E、D在同一条直线上,已知部分伞架的长度如下:单位:cm伞架DEDFAEAFABAC长度363636368686(1)求AM的长(2)当BAC=104时,
18、求AD的长(精确到1cm)备用数据:sin52=0.788,cos52=0.6157,tan52=1.2799考点:解直角三角形的应用分析:(1)根据AM=AE+DE求解即可;(2)先根据角平分线的定义得出EAD=BAC=52,再过点E作EGAD于G,由等腰三角形的性质得出AD=2AG,然后在AEG中,利用余弦函数的定义求出AG的长,进而得到AD的长度解答:解:(1)由题意,得AM=AE+DE=36+36=72(cm)故AM的长为72cm;(2)AP平分BAC,BAC=104,EAD=BAC=52过点E作EGAD于G,AE=DE=36,AG=DG,AD=2AG在AEG中,AGE=90,AG=A
19、EcosEAG=36cos52=360.6157=22.1652,AD=2AG=222.165244(cm)故AD的长约为44cm点评:本题考查了解直角三角形在实际生活中的应用,其中涉及到角平分线的定义,等腰三角形的性质,三角函数的定义,难度适中16、(2018年南京)已知不等臂跷跷板AB长4m。如图j,当AB的一端碰到地面时,AB与地面的夹 角为a;如图k,当AB的另一端B碰到地面时,AB与地面的夹角为b。求跷跷板AB的支撑点O到地面的高度OH。(用含a、b的式子表示)jOABABaHObHk解析:解:在RtAHO中,sina= ,OA= 。 在RtBHO中,sinb= ,OB= 。 AB=
20、4,OA+OB=4,即 + =4。OH= (m)。 (8分)(2018年江西省)如图1,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB,如图2所示,量得连杆OA长为10cm,雨刮杆AB长为48cm,OAB=120若启动一次刮雨器,雨刮杆AB正好扫到水平线CD的位置,如图3所示 (1)求雨刮杆AB旋转的最大角度及O、B两点之间的距离;(结果精确到0.01) (2)求雨刮杆AB扫过的最大面积(结果保留的整数倍) (参考数据:sin60=,cos60=,tan60=,26.851,可使用科学计算器)【答案】解:(1)雨刮杆AB旋转的最大角度为180 连接OB,过O点作
21、AB的垂线交BA的延长线于EH,OAB=120,OAE=60在RtOAE中,OAE=60,OA=10,sinOAE=,OE=5, AE=5.EB=AE+AB=53, 在RtOEB中,OE=5,EB=53,OB=253.70; (2)雨刮杆AB旋转180得到CD,即OCD与OAB关于点O中心对称,BAOOCD,SBAO=SOCD, 雨刮杆AB扫过的最大面积S=(OB2OA2) =1392.【考点解剖】 本题考查的是解直角三角形的应用,以及扇形面积的求法,难点是考生缺乏生活经验,弄不懂题意(提供的实物图也不够清晰,人为造成一定的理解困难)【解题思路】 将实际问题转化为数学问题,(1)AB旋转的最大
22、角度为180;在OAB中,已知两边及其夹角,可求出另外两角和一边,只不过它不是直角三角形,需要转化为直角三角形来求解,由OAB=120想到作AB边上的高,得到一个含60角的RtOAE和一个非特殊角的RtOEB.在RtOAE中,已知OAE=60,斜边OA=10,可求出OE、AE的长,进而求得RtOEB中EB的长,再由勾股定理求出斜边OB的长;(2)雨刮杆AB扫过的最大面积就是一个半圆环的面积(以OB、OA为半径的半圆面积之差).【方法规律】 将斜三角形转化为直角三角形求解.在直角三角形中,已知两边或一边一角都可求出其余的量.【关键词】 刮雨器 三角函数 解直角三角形 中心对称 扇形的面积17、(
23、2018陕西)一天晚上,李明和张龙利用灯光下的影子来测量一路灯D的高度,如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m。已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m)BAECDNM第21题图考点:此题考查稳定,就是考查解直角三角形,或者考查的是相似三角形的应用测量高度,宽度等线段的长度的具体计算,将问题转换成方程(组)来求解,经常设置的具体的实际情景得到与测量相关的计算;解析:本题考查的是典型的测量问题之中心投影下的测量,而此问题设
24、置基本上就是应用相似的性质来将实际问题转化成数学问题来解决,解:如图,设CD长为m AMEC,CDEC,BNEC,EA=MAMACD,BNCD,EC=CD=,ABNACD 即 解得所以路灯高CD约为6.1米18、(2018年潍坊市)如图1所示,将一个边长为2的正方形和一个长为2、宽为1的长方形拼在一起,构成一个大的长方形.现将小长方形绕点顺时针旋转至,旋转角为.(1)当点恰好落在边上时,求旋转角的值;(2)如图2,为的中点,且090,求证:;(3)小长方形绕点顺时针旋转一周的过程中,与能否全等?若能,直接写出旋转角的值;若不能,说明理由.答案:(1) DC/EF,DCD=CDE=CDE=. sin=,=30(2) G为BC中点,GC=CE=CE=1,DCG=DCG+DCD=90+, DCE=DCE+DCD=90+,DCG=DCE又CD=CD, GCDECD, GD=ED(3) 能. =135或=315考点:图形的旋转、三角函数、解直角三角形、全等三角形的判定点评:本题依据学生的认知规律,从简单特殊的问题入手,将问题向一般进行拓展、变式,通过操作、观察、计算、猜想等获得结论.此类问题综合性较强,要完成本题学生需要有较强的类比、迁移、分析、变形应用、综合、推理和探究能力