历年各地初中数学青年教师解题竞赛试题及参考答案(上)(DOC 24页).doc

上传人(卖家):2023DOC 文档编号:5573160 上传时间:2023-04-25 格式:DOC 页数:28 大小:721KB
下载 相关 举报
历年各地初中数学青年教师解题竞赛试题及参考答案(上)(DOC 24页).doc_第1页
第1页 / 共28页
历年各地初中数学青年教师解题竞赛试题及参考答案(上)(DOC 24页).doc_第2页
第2页 / 共28页
历年各地初中数学青年教师解题竞赛试题及参考答案(上)(DOC 24页).doc_第3页
第3页 / 共28页
历年各地初中数学青年教师解题竞赛试题及参考答案(上)(DOC 24页).doc_第4页
第4页 / 共28页
历年各地初中数学青年教师解题竞赛试题及参考答案(上)(DOC 24页).doc_第5页
第5页 / 共28页
点击查看更多>>
资源描述

1、1. 2002年秋季广州市初中数学青年教师解题比赛试题及解答2. 常州市武进区初中数学教师解题竞赛试题及参考答案3. 2003年广州市初中数学青年教师解题比赛试题4. 2005年武进区初中数学教师解题竞赛试题初中数学青年教师解题竞赛试卷 一、填空(本题共有10小题,每小题4分,共40分) 1函数中,自变量的取值范围是 . 2圆锥的母线长为5cm,高为3 cm,在它的侧面展开图中,扇形的圆心角是 度. 3已知,那么的值是 . 4ABC中,D、E分别是AB、AC上的点,DE/BC,BE与CD相交于点O,在这个图中,面积相等的三角形有 对. 5不等式的正整数解的共有 个 6函数的图象在 象限 7在A

2、BC中,AB10,AC5,D是BC上的一点,且BD:DC2:3,则AD的取值范围是 . 8关于自变量的函数是偶函数的条件是 . 9若关于未知数的方程有两个不相等的实数根,则实数的取值范围是 . 10AB、AC为O相等的两弦,弦AD交BC于E,若AC12,AE8,则AD . 二、(本题满分12分) 11如图,已知点A和点B,求作一个圆O,和一个三角形BCD,使O经过点A,且使所作的图形是对称轴与直线AB相交的轴对称图形(要求写出作法,不要求证明) 三、(本题满分12分) 12梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽成等差数列,计算与最低一级最接近的一级的宽 四、(

3、本题满分13分) 13已知一条曲线在x轴的上方,它上面的每一点到点A(0,2)的距离减去它到x轴的距离的差都是2,求这条曲线的方程 五、(本通满分13分) 14池塘中竖着一块碑,在高于水面1米的地方观测,测得碑顶的仰角为,测得碑顶在水中倒影的俯角为(研究问题时可把碑顶及其在水中的倒影所在的直线与水平线垂直),求水面到碑顶的高度(精确到0.01米,). 六、(本题满分14分). 15若关于未知数x的方程(p、q是实数)没有实数根,求证:. 七、(本题满分14分) 16如果O外接于正方形ABCD,P为劣弧AD上的一个任意点,求:的值.八、(本题满分16分) 17试写出m的一个数值,使关于未知数x的

4、方程的两根中一个大于1,另一个小于1. 九、(本题满分16分) 18点P在锐角ABC的边上运动,试确定点P的位置,使PA+PBPC最小,并证明你的结论.参考答案一、1. 且 2.288 3. 4.4 5.6 .一、二、三 7. 4AD0,所求的曲线的方程是五、14.解:如图,DE表示水面,A表示观测点,B为碑顶,在水中的倒影,由题意:设,则在RtABC中, 在RtAC中, 由、得米答:水面到碑顶的高度4.41米.六、15.证:由题意,令得即七、16.解:如图,平分直角,在APB中,由余弦定理,得:同理,在BPC中,有当点P与点A或点D重合时.八、17.解法1:设,则,令,得,当时,所给方程两根

5、中,一个大于1,另一个小于1.解法2:设是方程的两根,则,依题意,解得:.当时,所给的方程的两根中,一个大于1,另一个小于1.九、18.解:当点P在锐角ABC最短边上的高的垂足的位置时,PA+PBPC最小.证明:如图,P为ABC一边BC边上的高的垂足,而Q为BC边上的任一点, 又设AC为ABC最短边,作这边上的高(如图),可知.在上截取,在BC上截取,作.垂足为,连结.四边形是矩形,在中,.2002年广州市初中数学青年教师解题比赛试卷2002.04.07题号一二三四五六七八九总分分数一、填空(本题共有10小题,每小题4分,共40分) 1函数中,自变量的取值范围是 2若一个半径为的扇形面积等于一

6、个半径为的圆的面积,则扇形的圆心角为 3分式方程2的解是 4代数式x22xy3y22x2y3的值的取值范围是 5O1、O2的半径分别为2和3,O1O29,则平面上半径为4且与O1、O2都相切的圆有 个 6、若关于未知数x的方程的两根都是正数,则m的取值范围是 7在RtABC中,AD是斜边BC上的高,如果BCa,则AD 8平面内一个圆把平面分成两部分,现有5个圆,其中每两个圆都相交,每三个圆都不共点,那么这5个圆则把平面分成 部分 9在平坦的草地上有甲、乙、丙三个小球若已知甲球与乙球相距5米,乙球与丙球相距3米,问甲球与丙球距离的取值范围?答: 10计算所得的结果是 二、(本题满分12分)11如

7、图,已知A是直线l外的一点,B是l上的一点求作:(1)O,使它经过A,B两点,且与l有交点C; (2)锐角BCD,使它内接于O(说明:只要求作出符合条件的一个圆和一个三角形,要求写出作法,不要求证明)三、(本题满分12分)12如图,己知正三棱锥SABC的高SOh,斜高SMl求经过SO的中点平行于底面的截面ABC的面积 四、(本题满分13分)13证明:与抛物线的轴平行的直线和抛物线只有一个交点五、(本题满分13分) 14甲、乙两船从河中A地同时出发,匀速顺水下行至某一时刻,两船分别到达B地和C地已知河中各处水流速度相同,且A地到B地的航程大于A地到C地的航程.两船在各自动力不变情况下,分别从B地

8、和C地驶回A地所需的时间为t1和t2试比较t1和t2的大小关系六、(本题满分14分)15如图,在锐角内,有五个相邻外切的不等圆,它们都与角的边相切,且半径分别为r1、r2、r3、r4、r5若最小的半径r11,最大的半径r581。求七、(本题满分16分)16过半径为r的圆O的直径AB上一点P,作PCAB交圆周于C若要以PA、PB、PC为边作三角形,求OP长的范围八、(本题满分16分)17设关于未知数x的方程x25xm210的实根为、,试确定实数m的取值范围,使|6成立九、(本题满分16分)18在重心为G的钝角ABC中,若边BC1,A300,且D点平分BC当A点变动,B、C不动时,求DG长度的取值

9、范围2002年广州市初中数学青年教师解题比赛试卷参考答案一、填空(本题共有10小题,每小题4分,共40分)1且 260 3 4 53 67 822 9相距大于等于2米而小于等于8米 104006001二、(本题满分12分)(1)作法: 在l上取点C,(使CAB90) 经过A、B、C作O,则O就是所求.(2)作法: 过O作BC的垂线交优弧BC于D, 连结DC、DB、AB,则BCD就是所求.三、(本题满分12分)解:连结OM、OA,在RtSOM中,.因为棱锥SABC正棱锥,所以O是等边ABC的中心.,四、(本题满分13分)证明:设抛物线方程为,平行于抛物线的轴的直线方程为.解方程组 得故抛物线方程

10、为与平行于其轴的直线只有一个交点五、(本题满分13分)解:若以、分别表示AB航程、AC航程、下行时间、在静水中甲船航速、乙船航速和水流速度,则有:,从而六、(本题满分14分)解:同理,同理可得,七、(本题满分16分) 解:不失一般性,令P在OB上,且,则有APBP,APPC.若以AP、BP、PC为边作三角形,结合上面条件,只须BPPCAP,即,又又.代入(1)得,解得:.OP的取值范围是.八、(本题满分16分)解:不论m取何值,所给的方程都有两个不相等的实根.,即.当时,成立,. (1)当时,得,. (2)由(1)、(2)得.九、(本题满分16分)解:在图中30的弓形弧BC,令MBBC,NCB

11、C,由题意知,A点在不含端点的BM、CN上.且BDADDM, 故,但,.2003年武进区初中数学教师解题竞赛试题命题人:于新华一、选择题(每题6分)1、如果一个三角形的一条边是另一条边的2倍,并且有一个角是30,那么这个三角形的形状是 ()A、直角三角形 B、钝角三角形 C、锐角三角形 D、不能唯一确定2、如图,正比例函数与反比例函数的图象相交于A、C两点,过A作x轴的垂线交x轴于B,连结BC,若ABC的面积为S,则 ()A、S1 B、S2C、S3 D、S的值不确定3、某工厂第二季度比第一季度的产值增长了x,第三季度的产值又比第二季度的产值增长了x。则第三季度的产值比第一季度的产值增长了 ()

12、A、2xB、12 xC、(1x)xD、(2x)x4、设P,Q,则P与Q的大小关系是 ( )A、PQ B、PQC、PQD、不能确定5、边长为整数,周长等于21的等腰三角形共有 ()A、4个 B、5个 C、6个 D、7个6、如果、是两个不相等的实数,且满足,那么等于 ( )A、2003 B、2003 C、1 D、17、若实数x,y满足条件,则的最大值是 ()A、14 B、15 C、16 D、不能确定8、如图1,图中平行四边形共有的个数是()A、40 B、38 C、36 D、30 (图1) (图2) (图3)9、如图2,矩形ABCD被分割成六个正方形,其中最小正方形的面积等于1,则矩形ABCD的面积

13、等于()A、152B、143C、132D、10810、如图3,若PAPB,APB2ACB,AC与PB交于点D,且PB4,PD3,则ADDC等于()A、6 B、7 C、12 D、16二、填空题(每题6分)11、ABC中,AB,AC2,BC边上的高为,则BC边的长为。12、锐角ABC中,a1,b2,则c边的取值范围是(用不等式表示)。13、若a2b3c4,5a6b7c8,则9a2b5c。14、一个游泳池的形状如下面左边第一个图所示,现在以固定的流量向游泳池内注水,那么能够大致表示水高h与时间t的关系应是在下面右边六个图像中的(填标号)。15、已知锐角ABC中,A60,BD和CE都是ABC的高。如果

14、ABC的面积为12,那么四边形BCDE的面积为。三、解答题(每题12分)16、已知:不论k取什么实数,关于x的方程(a、b是常数)的根总是x1,试求a、b的值。17、如图,在直角坐标系xOy中,已知A(12,0),B(0,9),C(3,0),D(0,4),Q为线段AB上一动点,OQ与过O、C、D三点的圆交于点P。问OPOQ的值是否变化?证明你的结论。18、请设计一种方案:把一个正方形剪两刀,使剪得的三块图形能够拼成一个三角形,并且使拼成的三角形既不是直角三角形也不是等腰三角形。画出必要的示意图,并附以简要的文字说明。19、某市为了节约用水,规定:每户每月用水量不超过最低限量时,只付基本费8元和

15、定额损耗费c元(c5);若用水量超过时,除了付同上的基本费和损耗费外,超过部分每1付b元的超额费。某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:用水量()交水费(元)一月份99二月份1519三月份2233根据上表的表格中的数据,求a、b、c。20、在两个三角形的六对元素(三对角与三对边)中,即使有五对元素对应相等,这两个三角形也未必全等。试给出一个这样的例子,画出简图,分别标出两个三角形的边长。为了把所有这样的反例都构造出来,试探求并给出构造反例的一般规律(要求过程完整,述理严密,结论明晰)。武进区初中数学教师解题竞赛试题参考答案一、选择题题号12345678910答案DA

16、DABDBCBB二、填空题11、4或2 12、 13、24 14、 15、9三、解答题16、解:把x1代入原方程并整理得(b4)k72a要使等式(b4)k72a不论k取什么实数均成立,只有解之得,17、解:点Q在线段AB上运动的过程中,OPOQ的值是不变的。证明如下:连结DC、PC,CODBOARtCODBOA1AO、C、P、D四点共圆122APOCAOQ POCAOQ OPOQOCOA3618、解:如图,在AD边上任取一点N,使点N不是边AD的中点。分别作出线段AN、DN的中点、,把AB绕点旋转180得NM,再把CD绕点旋转180得MN。这样由MN、MN以及四边形BC拼成了一个MBC,显然这

17、个三角形既不是等腰三角形,也不是直角三角形。就是说,只要把当初的正方形ABCD沿B、C剪两刀,则得到的三块图形就可以如图所示地拼成一个符合题意的三角形。下面再提供几种裁剪方案(仔细揣摩吧,一些说明就省了):19、解:设每月用水量为x,支付水费为y元。则由题意知:0c5 08c13从表中可知,第二、三月份的水费均大于13元,故用水量15、22均大于最低限量a,将x15,x22分别代入式,得解得 b2,2ac19再分析一月份的用水量是否超过最低限量,不妨设9a,将x9代入,得982(9a)c,即2ac17 与矛盾。故9a,则一月份的付款方式应选式,则8c9,c1代入式得,a10。综上得a10,b2

18、,c1。20、解:如下图,ABC与是相似的(相似比为),但它们并不全等,显然它们之中有五对元素是对应相等的。容易知道,要构造的两个三角形必不是等腰三角形,同时它们应是相似的。设小ABC的三边长分别为a、b、c,且不妨设abc,由小ABC到大的相似比为k,则k1。的三边长分别为ka、kb、kc,且akakbkc在ABC中,与中两边对应相等的两条边只可能是b与cbckc在中,与b、c对应相等的两条边只可能是ka、kb由a到b、由b到c应具有相同的放大系数(用高中的数学语言来讲,a、b、c成公比为k的等比数列),这个系数恰为ABC与的相似比k。下面考虑相似比k所受到的限制:ABC的三边长分别为,且a

19、0,k1解之得1k(注:1.168)因此构造反例时,只要先选取一个正数a作为ABC最小边的长,再设定一个11.168之间的放大系数k,从而写出另外两条边的长。然后在ABC的基础上,以前面的放大系数k为相似比,再写出另一个的三边长。通过这种方法,可以构造出大量符合题意的反例。 (2002.12.15)2003广州初中数学青年教师解题竞赛试卷一、填空(本题共有8小题,每小题5分,共40分)把多项式分解因式所得的结果是_如果不等边三角形各边长均为整数,且周长小于13,那么这样的三角形共有_个函数中,自变量x的取值范围是_若关于未知数x的一元二次方程有一个根为0,则m的值为_条件P:或,条件q:中,P

20、是q的_条件(填充分不必要、必要不充分、充要、既不充分也不必要中的一个)两个等圆相交于A、B两点,过B作直线分别交两圆于点C、D那么 ACD一定是 _三角形(要求以边或角的分类作答)一直角三角形的斜边长为c,它的内切圆的半径是r,则内切圆的面积与三角形的面积的_不等边三角形ABC的两条高的长度分别为4和12,若第三条高也为整数,那么它的长度最大可能是_二、(本题满分12分)如图,已知点A在O上,点B在O外,BOA求作一个圆,使它经过点B,并且与O相切于点A(要求写出作法,不要求证明)三、(本题满分12分)10一次选拔考试的及格率为25%,及格者的平均分数比规定的及格分数多15分,不及格者的平均

21、分数比规定的及格分数少25分,又知全体考生的平均分数是60分,求这次考试规定的及格分数是多少?四、(本题满分13分)11有30根水泥电线杆,要运往1000米远的地方开始安装,在1000米处放一根,以后每50米放一根,一辆汽车每次只能运3根,如果用一辆汽车完成这项任务,这辆汽车的行程共有多少千米?五、(本题满分13分)12正实数a、b满足ab=ba,且a1,求证:a=b.六、(本题满分14分)13已知m为整数,且12m40,试求m为何值时,关于未知数x的方程有两个整数根MB七、(本题满分14分)A14如图,已知A、B是锐角的OM边上的ON两个定点,P在ON边上运动问P点在什么位置时,的值最小?八

22、、(本题满分16分)15已知抛物线的顶点在直线上,且这个顶点到原点的距离为,又知抛物线与x轴两交点横坐标之积等于,求此抛物线的解析式九、(本题满分16分)16已知ABC是锐角三角形求证:2sinAcosB+cosC;若点M在边AC上,作ABM和CBM的外接圆,则当M在什么位置时,两外接圆的公共部分面积最小?2005年武进区初中数学教师解题竞赛试题命题人:于新华一、选择题(每题6分)1、如果一个三角形的一条边是另一条边的2倍,并且有一个角是30,那么这个三角形的形状是 ()A、直角三角形B、钝角三角形C、锐角三角形D、不能唯一确定2、如图,正比例函数与反比例函数的图象相交于A、C两点,过A作x轴

23、的垂线交x轴于B,连结BC,若ABC的面积为S,则 ()A、S1 B、S2C、S3 D、S的值不确定3、某工厂第二季度比第一季度的产值增长了x,第三季度的产值又比第二季度的产值增长了x。则第三季度的产值比第一季度的产值增长了 ()A、2xB、12 xC、(1x)xD、(2x)x4、设P,Q,则P与Q的大小关系是 ( )A、PQ B、PQC、PQD、不能确定5、边长为整数,周长等于21的等腰三角形共有()A、4个 B、5个C、6个D、7个6、如果、是两个不相等的实数,且满足,那么等于 ( )A、2003 B、2003 C、1 D、17、若实数x,y满足条件,则的最大值是 ()A、14 B、15

24、C、16 D、不能确定8、如图1,图中平行四边形共有的个数是()A、40B、38C、36D、30 (图1) (图2) (图3)9、如图2,矩形ABCD被分割成六个正方形,其中最小正方形的面积等于1,则矩形ABCD的面积等于()A、152B、143C、132D、10810、如图3,若PAPB,APB2ACB,AC与PB交于点D,且PB4,PD3,则ADDC等于()A、6 B、7 C、12 D、16二、填空题(每题6分)11、ABC中,AB,AC2,BC边上的高为,则BC边的长为。12、锐角ABC中,a1,b2,则c边的取值范围是(用不等式表示)。13、若a2b3c4,5a6b7c8,则9a2b5

25、c。14、一个游泳池的形状如下面左边第一个图所示,现在以固定的流量向游泳池内注水,那么能够大致表示水高h与时间t的关系应是在下面右边六个图像中的(填标号)。15、已知锐角ABC中,A60,BD和CE都是ABC的高。如果ABC的面积为12,那么四边形BCDE的面积为。三、解答题(每题12分)16、已知:不论k取什么实数,关于x的方程(a、b是常数)的根总是x1,试求a、b的值。17、如图,在直角坐标系xOy中,已知A(12,0),B(0,9),C(3,0),D(0,4),Q为线段AB上一动点,OQ与过O、C、D三点的圆交于点P。问OPOQ的值是否变化?证明你的结论。18、请设计一种方案:把一个正

26、方形剪两刀,使剪得的三块图形能够拼成一个三角形,并且使拼成的三角形既不是直角三角形也不是等腰三角形。画出必要的示意图,并附以简要的文字说明。19、某市为了节约用水,规定:每户每月用水量不超过最低限量时,只付基本费8元和定额损耗费c元(c5);若用水量超过时,除了付同上的基本费和损耗费外,超过部分每1付b元的超额费。某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:用水量()交水费(元)一月份99二月份1519三月份2233根据上表的表格中的数据,求a、b、c。20、在两个三角形的六对元素(三对角与三对边)中,即使有五对元素对应相等,这两个三角形也未必全等。试给出一个这样的例子,

27、画出简图,分别标出两个三角形的边长。为了把所有这样的反例都构造出来,试探求并给出构造反例的一般规律(要求过程完整,述理严密,结论明晰武进区初中数学教师解题竞赛试题参考答案一、选择题题号12345678910答案DADABDBCBB二、填空题11、4或2 12、 13、24 14、 15、9三、解答题16、解:把x1代入原方程并整理得(b4)k72a要使等式(b4)k72a不论k取什么实数均成立,只有解之得,17、解:点Q在线段AB上运动的过程中,OPOQ的值是不变的。证明如下:连结DC、PC,CODBOARtCODBOA1AO、C、P、D四点共圆122APOCAOQ POCAOQ OPOQOC

28、OA3618、解:如图,在AD边上任取一点N,使点N不是边AD的中点。分别作出线段AN、DN的中点、,把AB绕点旋转180得NM,再把CD绕点旋转180得MN。这样由MN、MN以及四边形BC拼成了一个MBC,显然这个三角形既不是等腰三角形,也不是直角三角形。就是说,只要把当初的正方形ABCD沿B、C剪两刀,则得到的三块图形就可以如图所示地拼成一个符合题意的三角形。下面再提供几种裁剪方案(仔细揣摩吧,一些说明就省了):19、解:设每月用水量为x,支付水费为y元。则由题意知:0c5 08c13从表中可知,第二、三月份的水费均大于13元,故用水量15、22均大于最低限量a,将x15,x22分别代入式

29、,得解得 b2,2ac19再分析一月份的用水量是否超过最低限量,不妨设9a,将x9代入,得982(9a)c,即2ac17 与矛盾。故9a,则一月份的付款方式应选式,则8c9,c1代入式得,a10。综上得a10,b2,c1。20、解:如下图,ABC与是相似的(相似比为),但它们并不全等,显然它们之中有五对元素是对应相等的。容易知道,要构造的两个三角形必不是等腰三角形,同时它们应是相似的。设小ABC的三边长分别为a、b、c,且不妨设abc,由小ABC到大的相似比为k,则k1。的三边长分别为ka、kb、kc,且akakbkc在ABC中,与中两边对应相等的两条边只可能是b与cbckc在中,与b、c对应相等的两条边只可能是ka、kb由a到b、由b到c应具有相同的放大系数(用高中的数学语言来讲,a、b、c成公比为k的等比数列),这个系数恰为ABC与的相似比k。下面考虑相似比k所受到的限制:ABC的三边长分别为,且a0,k1解之得1k(注:1.168)因此构造反例时,只要先选取一个正数a作为ABC最小边的长,再设定一个11.168之间的放大系数k,从而写出另外两条边的长。然后在ABC的基础上,以前面的放大系数k为相似比,再写出另一个的三边长。通过这种方法,可以构造出大量符合题意的反例。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 数学 > 竞赛
版权提示 | 免责声明

1,本文(历年各地初中数学青年教师解题竞赛试题及参考答案(上)(DOC 24页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|