1、宁夏2020年银川市中考数学模拟试题含答案(历年真题精选)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一项是符合题目要求的)1.某种细胞的直径是0.00000085米,将0.00000085用科学记数法表示为 ( ) A.8.510-8 B.8.510-7 C.0.8510-7 D.8510-8 2.下列运算正确的是 ( ) A.(a + b)2 = a2 + b2 B. a3a4 = a7 Ca8a2 = a4 D.2a + 6b = 8ab(第4题图)3.下列图形中,既是轴对称图形,又是中心对称图形的是 ( ) A B C D4.如图,在长为100米,宽为
2、80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为( ) A.10080-100x-80x = 7644 B.(100-x)(80-x)+ x2 = 7644 C.(100-x)(80-x)= 7644D.100x + 80x = 356 (第6题图) 5.图中三种视图对应的正三棱柱是 ( )6如图,以点O为位似中心,将ABC放大得到DEF.若AD=OA,则ABC与DEF的面积之比为( )A.1:2 B.1:4 C.1:5 D.1:6 7.若关于x的一元二次方程x2-2x+kb+1=0有两个不相
3、等的实数根,则一次函数y=kx+b的图象可能是 ( ) A B C D8.用直尺和圆规作RtABC斜边AB上的高线CD,以下四个作图中,作法错误的是( )二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上)9.(-2016)0+ tan450 = .10. 分式方程=0的根是 .第14题图 第15题图 第16题图 11.已知O是以坐标原点O为圆心,5为半径的圆,点M的坐标为(-3,4),则点M与O的位置关系为 .12.第二象限内的P(x,y)满足|x|=5,y2=4,则点P的坐标是 .13.如果有意义,则a的取值范围是 . 14. 在ABC中,A =40,AB的垂直平分
4、线MN交AC于点D,DBC=30,若AB=m,BC=n,则DBC的周长为 .15.如图,某兴趣小组为测量学校旗杆AB的高度,在教学楼一楼C处测得旗杆顶部的仰角为600,在教学楼三楼D处测得旗杆顶部的仰角为300,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB的高度为 米.16.如图,PA、PB是O的切线,切点分别为A、B,点C在O上,如果P=500,那么ACB等于 .三、解答题(本大题共9小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.( 6分)解不等式组18.(6分)先化简,后求值. , 其中=+1. 19.(6分)如图所示,正方形网格中,ABC为
5、格点三角形(即三角形的顶点都在格点上)(1)把ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的A1B1C1;(2)把A1B1C1绕点A1按逆时针方向旋转900,在网格中画出旋转后的A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.20.(6分)已知,在平面直角坐标系xoy中,点A在x轴负半轴上,点B在y轴正半轴上,OA=OB,函数y=-的图象与线段AB交于M点,且AM=BM.(1) 求点M的坐标;(2) 求直线AB的解析式. 21.(6分)如图,在ABC中,C=2B,D是BC上的一点,且ADAB,点E是BD的中点,连接AE. (1)求证:
6、AEC=C;(2)若AE=6.5,AD=5,那么ABE的周长是多少? 22.(6分)二次函数y=ax2+bx-3的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C.该抛物线的顶点为M.(1) 求该抛物线的的解析式;(2) 判断BCM的形状,并说明理由.密封线23.(8分)如图,O是ABC的外接圆,AB是O的直径,D为O上一点,ODAC,垂足为E, 连接BD.(1)求证:BD平分;(2)当时,求证:BC=OD.24.(8分)王老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期两周的跟踪调查,并将调查结果分成四类:A:特别好;B:好;C、一般;D:较差.并
7、将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,王老师一共调查了 名同学,其中C类女生有 名,D类男生有 名;(2)将下面的条形图补充完整;(3)为了共同进步,王老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或树状图法求出所选两位同学恰好是一位男同学和一位女同学的概率.25.(10分)某通讯公司销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表:甲乙进价(元/部)40002500售价(元/部)43003000该通讯公司计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元.(毛利润=(售价
8、-进价)销售量)(1) 该通讯公司计划购进甲、乙两种手机各多少部?(2)通过市场调研,该通讯公司决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,问:该通讯公司怎样进货,才能使全部销售后获得的毛利润最大?并求出最大毛利润.26.(10分)如图,正方形ABCD的边长是4,点P是直线BC上一点,连接PA,将线段PA绕点P逆时针旋转900得到线段PE,在直线BA上取点F,使BF=BP.且点F与点E在BC同侧,连接EF,CF.(1)如图,当点P在CB延长线上时,求证:四边形PCFE是平行四边形;(2)如图,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由; 图(3)在(2)的条件下,四边形PCFE的面积是否有最大值?若有,请求出面积的最大值及此时BP的长;若没有,请说明理由.