1、新课标高中数学(必修2)单元测试卷目 录第一章 空间几何体基础训练A组1第一章 空间几何体综合训练B组3第一章 空间几何体提高训练C组5第二章 点、直线、平面之间的位置关系基础训练A组7第二章 点、直线、平面之间的位置关系综合训练B组9第二章 点、直线、平面之间的位置关系提高训练C组11第三章 直线与方程基础训练A组13第三章 直线与方程综合训练B组15第三章 直线与方程提高训练C组17第四章 圆与方程基础训练A组19第四章 圆与方程综合训练B组21第四章 圆与方程提高训练C组23答案详解第一章 空间几何体基础训练A组25第一章 空间几何体综合训练B组26第一章 空间几何体提高训练C组27第二
2、章 点、直线、平面之间的位置关系基础训练A组28第二章 点、直线、平面之间的位置关系综合训练B组29第二章 点、直线、平面之间的位置关系提高训练C组30第三章 直线和方程基础训练A组31第三章 直线和方程综合训练B组32第三章 直线和方程提高训练C组34第四章 圆和方程基础训练A组35第四章 圆和方程综合训练B组37第四章 圆和方程提高训练C组38特别说明40第一章 空间几何体基础训练A组一、选择题1有一个几何体的三视图如下图所示,这个几何体应是一个( )A.棱台 B.棱锥 C.棱柱 D.都不对 主视图 左视图 俯视图2棱长都是的三棱锥的表面积为( )A. B. C. D. 3长方体的一个顶点
3、上三条棱长分别是,且它的个顶点都在同一球面上,则这个球的表面积是( ) A B C D都不对二、填空题1一个棱柱至少有 _个面,面数最少的一个棱锥有 _个顶点,顶点最少的一个棱台有 _条侧棱。2若三个球的表面积之比是,则它们的体积之比是_。3正方体 中,是上底面中心,若正方体的棱长为,则三棱锥的体积为_。4如图,分别为正方体的面、面的中心,则四边形 在该正方体的面上的射影可能是_。三、解答题1养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为,高,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大(高不变);二是高
4、度增加 (底面直径不变)。(1) 分别计算按这两种方案所建的仓库的体积;(2) 分别计算按这两种方案所建的仓库的表面积;(3) 哪个方案更经济些?2将圆心角为,面积为的扇形,作为圆锥的侧面,求圆锥的表面积和体积. . .完整版下载地址. . . 第一章 空间几何体综合训练B组一、选择题1如果一个水平放置的图形的斜二测直观图是一个底面为,腰和上底均为的等腰梯形,那么原平面图形的面积是( )A B C D 2半径为的半圆卷成一个圆锥,则它的体积为( )A B C D 3一个正方体的顶点都在球面上,它的棱长为,则球的表面积是( ) 4圆台的一个底面周长是另一个底面周长的倍,母线长为,圆台的侧面积为,
5、则圆台较小底面的半径为( ) A 5棱台上、下底面面积之比为,则棱台的中截面分棱台成两部分的体积之比是( )A 6如图,在多面体中,已知平面是边长为的正方形,,且与平面的距离为,则该多面体的体积为( )A 二、填空题1圆台的较小底面半径为,母线长为,一条母线和底面的一条半径有交点且成,则圆台的侧面积为_。2中,将三角形绕直角边旋转一周所成的几何体的体积为_。 3等体积的球和正方体,它们的表面积的大小关系是_4若长方体的一个顶点上的三条棱的长分别为,从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,其最短路程是_。5 图(1)为长方体积木块堆成的几何体的三视图,此几何体共由_块木块堆成
6、;图(2)中的三视图表示的实物为_。图(2)图(1)。三、解答题1.有一个正四棱台形状的油槽,可以装油,假如它的两底面边长分别等于和,求它的深度为多少?. . .完整版下载地址. . . 第一章 空间几何体提高训练C组一、选择题1下图是由哪个平面图形旋转得到的( )A B C D2过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为( )A. B. C. D. 3在棱长为的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去个三棱锥后 ,剩下的几何体的体积是( )A. B. C. D. . . .完整版下载地址. . . 二、填空题1. 若圆锥的表面积是,侧面
7、展开图的圆心角是,则圆锥的体积是_。2.一个半球的全面积为,一个圆柱与此半球等底等体积,则这个圆柱的全面积是.3球的半径扩大为原来的倍,它的体积扩大为原来的 _ 倍.4一个直径为厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高厘米则此球的半径为_厘米.5已知棱台的上下底面面积分别为,高为,则该棱台的体积为_。三、解答题1. (如图)在底半径为,母线长为的圆锥中内接一个高为的圆柱,求圆柱的表面积第一章 空间几何体 基础训练A组一、选择题 1. A 从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断是棱台2.A 因为四个面是全等的正三角形,则3.B 长方体的对角线是球的直径,4.D 正方体的棱长是内切球的直径,正方体的对角线是外接球的直径,设棱长是 5.D 6.D 设底面边长是,底面的两条对角线分别为,而而即二、填空题1. 符合条件的几何体分别是:三棱柱,三棱锥,三棱台2. 3. 画出正方体,平面与对角线的交点是对角线的三等分点,三棱锥的高或:三棱锥也可以看成三棱锥,显然它的高为,等腰三角形为底面。. . .完整版下载地址. . .