1、2020年岳阳市数学中考试题一、选择题(本大题共8小题,在每道小题给出的四个选项中,选出符合要求的一项)1.-2020的相反数是( )A. 2020B. -2020C. D. 2.2019年以来,我国扶贫攻坚取得关键进展,农村贫困人口减少11090000人,数据11090000用科学记数法表示为( )A. B. C. D. 3.如图,由4个相同正方体组成的几何体,它的左视图是( )A. B. C. D. 4.下列运算结果正确的是( )A. B. C. D. 5.如图,则度数是( )A. B. C. D. 6.今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中
2、7名学生的体温(单位:)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这组数据的众数和中位数分别是( )A. 36.3,36.5B. 36.5,36.5C. 36.5,36.3D. 36.3,36.77.下列命题是真命题的是( )A. 一个角的补角一定大于这个角B. 平行于同一条直线的两条直线平行C. 等边三角形是中心对称图形D. 旋转改变图形形状和大小8.对于一个函数,自变量取时,函数值等于0,则称为这个函数零点若关于的二次函数有两个不相等的零点,关于的方程有两个不相等的非零实数根,则下列关系式一定正确的是( )A. B. C. D. 二、填空题(本大题共8个小
3、题)9.因式分解:_10.函数中,自变量的取值范围是_11.不等式组的解集是_12.如图:在中,是斜边上的中线,若,则_13.在,1,2,3五个数中随机选取一个数作为二次函数中的值,则该二次函数图象开口向上的概率是_14.已知,则代数式的值为_15.九章算术中有这样一个题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十今将钱三十,得酒二斗问醇、行酒各得几何?”其译文:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱现有30钱,买得2斗酒问醇酒、行酒各能买得多少?设醇酒为x斗,行酒为y斗,则可列二元一次方程组为_16.如图,为半O的直径,是半圆上的三等分点,与半O相切于点,点为上
4、一动点(不与点,重合),直线交于点,于点,延长交于点,则下列结论正确的是_(写出所有正确结论的序号);的长为;为定值三、解答题(解答应写出必要的文字说明、证明过程或演算步骤)17.计算:18.如图,点,在的边,上,连接,求证:四边形是平行四边形19.如图,一次函数的图象与反比例函数(为常数且)的图象相交于,两点(1)求反比例函数的表达式;(2)将一次函数的图象沿轴向下平移个单位,使平移后的图象与反比例函数的图象有且只有一个交点,求的值20.我市某学校落实立德树人根本任务,构建“五育并举”教育体系,开设了“厨艺、园艺、电工、木工、编织”五大类劳动课程为了解七年级学生对每类课程的选择情况,随机抽取
5、了七年级若干名学生进行调查(每人只选一类最喜欢的课程),将调查结果绘制成如下两幅不完整的统计图:(1)本次随机调查的学生人数为 人;(2)补全条形统计图;(3)若该校七年级共有800名学生,请估计该校七年级学生选择“厨艺”劳动课程的人数;(4)七(1)班计划在“园艺、电工、木工、编织”四大类劳动课程中任选两类参加学校期末展示活动,请用列表或画树状图的方法,求恰好选中“园艺、编织”这两类劳动课程的概率21.为做好复工复产,某工厂用、两种型号机器人搬运原料,已知型机器人比型机器人每小时多搬运,且型机器人搬运所用时间与型机器人搬运所用时间相等,求这两种机器人每小时分别搬运多少原料22.共抓长江大保护
6、,建设水墨丹青新岳阳,推进市中心城区污水系统综合治理项目,需要从如图,两地向地新建,两条笔直的污水收集管道,现测得地在地北偏东方向上,在地北偏西方向上,的距离为,求新建管道的总长度(结果精确到,)23.如图1,在矩形中,动点,分别从点,点同时以每秒1个单位长度的速度出发,且分别在边上沿,的方向运动,当点运动到点时,两点同时停止运动,设点运动的时间为,连接,过点作,与边相交于点,连接(1)如图2,当时,延长交边于点求证:;(2)在(1)的条件下,试探究线段三者之间的等量关系,并加以证明;(3)如图3,当时,延长交边于点,连接,若平分,求的值24.如图1所示,在平面直角坐标系中,抛物线与轴交于点和
7、点,与轴交于点(1)求抛物线的表达式;(2)如图2,将抛物线先向左平移1个单位,再向下平移3个单位,得到抛物线,若抛物线与抛物线相交于点,连接,求点坐标;判断的形状,并说明理由;(3)在(2)的条件下,抛物线上是否存在点,使得为等腰直角三角形,若存在,求出点的坐标;若不存在,请说明理由 参考答案1.A2.D3.A4.C5.D6.B7.B8.B9.10.11.12.13.14.415.16.17.原式18.证明:四边形ABCD是平行四边形,ADBC,AD=BC,BE=FD,四边形是平行四边形19.(1)由题意,将点代入一次函数得:将点代入得:,解得则反比例函数的表达式为;(2)将一次函数的图象沿
8、轴向下平移个单位得到的一次函数的解析式为联立整理得:一次函数的图象与反比例函数的图象有且只有一个交点关于x的一元二次方程只有一个实数根此方程的根的判别式解得则b的值为1或920.解:(1)根据题意,本次随机调查的学生人数为:(人);故答案为:50;(2)选择编织的人数为:(人),补全条形图如下:(3)该校七年级学生选择“厨艺”劳动课程人数为:(人);(4)根据题意,“园艺、电工、木工、编织”可分别用字母A,B,C,D表示,则列表如下:共有12种等可能的结果,其中恰好抽到“园艺、编织”类的有2种结果,恰好抽到“园艺、编织”类的概率为:;21.设A型号机器人每小时搬运原料,则B型号机器人每小时搬运
9、原料由题意得:解得经检验,是所列分式方程的解则答:A型号机器人每小时搬运原料,B型号机器人每小时搬运原料22.如图,过点C作于点D由题意得:,设,则是等腰直角三角形在中,即解得经检验,是所列分式方程的解,在中,即解得则答:新建管道的总长度约为23.(1)由题意得:四边形ABCD是矩形,在和中,;(2),证明如下:如图,连接FQ由(1)已证:PQ是线段EF的垂直平分线在中,由勾股定理得:则;(3)如图,设FQ与AC的交点为点O由题意得:,平分,(角平分线的性质)是等腰三角形在和中,即是的角平分线(等腰三角形的三线合一)在中,在中,即解得,即故的值为24.(1)将点代入抛物线的表达式得:解得则抛物
10、线的表达式为故抛物线的表达式为;(2)由二次函数的平移规律得:抛物线的表达式为即联立,解得则点的坐标为;对于当时,解得或则点B的坐标为当时,则点C的坐标为由两点之间的距离公式得:则,故是等腰直角三角形;(3)抛物线的表达式为设点P的坐标为由题意,分以下三种情况:当时,为等腰直角三角形是等腰直角三角形,点D是CP的中点则,解得即点P的坐标为对于抛物线表达式当时,即点在抛物线上,符合题意当时,为等腰直角三角形,四边形BCDP是平行四边形点C至点B的平移方式与点D至点P的平移方式相同点C至点B的平移方式为先向下平移4个单位长度,再向右平移2个单位长度即点P坐标为对于抛物线的表达式当时,即点在抛物线上,符合题意当时,为等腰直角三角形则点P在线段BD的垂直平分线上设直线BD的解析式将点代入得:,解得则直线BD的解析式设BD的垂线平分线所在直线的解析式为点的中点的坐标为,即将点代入得:,解得则BD的垂线平分线所在直线的解析式为因此有,即点P的坐标为由两点之间的距离公式得:又,为等腰直角三角形则解得或当时,即点P坐标为当时,即点P的坐标为对于抛物线的表达式当时,即点不在抛物线上,不符合题意,舍去当时,即点不在抛物线上,不符合题意,舍去综上,符合条件的点P的坐标为或