空间立体几何知识点归纳(文科)(DOC 6页).doc

上传人(卖家):2023DOC 文档编号:5651059 上传时间:2023-04-29 格式:DOC 页数:6 大小:495.50KB
下载 相关 举报
空间立体几何知识点归纳(文科)(DOC 6页).doc_第1页
第1页 / 共6页
空间立体几何知识点归纳(文科)(DOC 6页).doc_第2页
第2页 / 共6页
空间立体几何知识点归纳(文科)(DOC 6页).doc_第3页
第3页 / 共6页
空间立体几何知识点归纳(文科)(DOC 6页).doc_第4页
第4页 / 共6页
空间立体几何知识点归纳(文科)(DOC 6页).doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、学习必备 欢迎下载第一章 空间几何体知识点归纳1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。简单组合体的构成形式: 一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成。棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。1、 空间几何体的三视图和直观图投影:中心投影 平行投影(1)定义:几何体的正视图、侧视图和俯视图统称为几何体的三视图。(2)

2、三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:建立适当直角坐标系(尽可能使更多的点在坐标轴上)建立斜坐标系,使=450(或1350),注意它们确定的平面表示水平平面;画对应图形,在已知图形平行于X轴的线段,在直观图中画成平行于X轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y轴,且长度变为原来的一半; 一般地,原图的面积是其直观图面积的倍,即4、空间几何体的表面积与体积圆柱侧面积;圆锥侧面积:圆台侧面积:体积公式:; 球的表面积和体积:.

3、一般地,面积比等于相似比的平方,体积比等于相似比的立方。第二章 点、直线、平面之间的位置关系及其论证1 、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内公理1的作用:判断直线是否在平面内2、公理2:过不在一条直线上的三点,有且只有一个平面。 若A,B,C不共线,则A,B,C确定平面推论1:过直线的直线外一点有且只有一个平面 若,则点A和确定平面推论2:过两条相交直线有且只有一个平面 若,则确定平面推论3:过两条平行直线有且只有一个平面 若,则确定平面公理2及其推论的作用:确定平面;判定多边形是否为平面图形的依据。3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条

4、过该点的公共直线。 公理3作用:(1)判定两个平面是否相交的依据;(2)证明点共线、线共点等。4、公理4:也叫平行公理,平行于同一条直线的两条直线平行.5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。 作用:该定理也叫等角定理,可以用来证明空间中的两个角相等。6、线线位置关系:平行、相交、异面。(1)没有任何公共点的两条直线平行(2)有一个公共点的两条直线相交(3)不同在任何一个平面内的两条直线叫异面直线7、线面位置关系:直线在平面内、平行、相交 8、面面位置关系:平行、相交。9、证明两直线平行的主要方法是: 三角形中位线定理:三角形中位线平行并等于底边的一半; 平行四边

5、形的性质:平行四边形两组对边分别平行; 线面平行的性质:如果一条直线平行于一个平面,经过这条直线的平面与这个平面相交,那么这条直线和它们的交线平行; 平行线的传递性: 面面平行的性质:如果一个平面与两个平行平面相交,那么它们的交线平行; 垂直于同一平面的两直线平行; 直线与平面平行的性质:如果一条直线平行于一个平面,经过这条直线的平面与这个平面相交,那么这条直线和它们的交线平行;(上面的)10、线面平行:(即直线与平面无任何公共点)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。(只需在平面内找一条直线和平面外的直线平行就可以) (2)性质:两平面平行,一平面上的任一条

6、直线与另一个平面平行; 11、面面平行:(即两平面无任何公共点) (1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 (2)面面平行性质:平行于同一平面的两平面平行; (3)面面平行性质:垂直于同一直线的两平面平行 另外性质:夹在两平行平面间的平行线段相等; 11、线线垂直:证明两直线垂直和主要方法:利用勾股定理证明两相交直线垂直;利用等腰三角形三线合一证明两相交直线垂直;利用线面垂直的定义证明(特别是证明异面直线垂直);(4)线面垂直性质:利用三垂线定理证明两直线垂直(“三垂”指的是“线面垂”“线影垂”,“线斜垂”)11、线面垂直:定义:如果一条直线垂直于一个平面内

7、的任意一条直线,那么就说这条直线和这个平面垂直。判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。 性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。 12、面面垂直:定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直。 (只需在一个平面内找到另一个平面的垂线就可证明面面垂直) 转化思想面面平行 线面平行 线线平行面面垂直 线面垂直 线线垂直空间角及空间距离的计算一、异面直线所成的角1.异面直线所成角:使异面直线平移后相交形成的夹角,通常在两异面直线中的一条上取一点,过该点

8、作另一条直线平行线,2、求法:平移直线法(一作,二说,三求余弦定理)二、斜线与平面成成的角1. 斜线与平面成成的角:斜线与它在平面上的射影成的角。如图:PA是平面的一条斜线,A为斜足,O为垂足,OA叫斜线PA在平面上射影,为线面角。2、范围:3、求法:定义法(一作,二说,三求解直角三角形)三、二面角1.二面角:从一条直线出发的两个半平面形成的图形,如图为二面角,二面角的大小指的是二面角的平面角的大小。二面角的平面角分别在两个半平面内且角的两边与二面角的棱垂直 范围:2、 求法:(1)定义法 用二面角的平面角的定义求二面角的大小的关键点是: 确构成二面角两个半平面和棱;明确二面角的平面角是哪个? 而要想明确二面角的平面角,关键是看该角的两边是否都和棱垂直。 (求空间角的三个步骤是“一找”、“二证”、“三计算”)(2)、三垂线定理法:条件:从一个面到另一个面有垂线(3)公式法:5.点到平面的距离:指该点与它在平面上的射影的连线段的长度。如图:O为P在平面上的射影,线段OP的长度为点P到平面的距离求法通常有:定义法和等体积法等体积法:就是将点到平面的距离看成是三棱锥的一个高。如图在三棱锥中有:

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文(空间立体几何知识点归纳(文科)(DOC 6页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|