1、n(5)两平面平行的判定n定义:如果两个平面没有公共点,那么这两个平面平行,即无公共点.n如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即若a,b,ab=P,a,b,则.n垂直于同一直线的两平面平行.即若a,a,则.n平行于同一平面的两平面平行.即若,则.n一个平面内的两条直线分别平行于另一平面内的两条相交直线,则这两个平面平行,即若a,b,c,d,ab=P,ac,bd,则.例1、n7、正方体ABCDA1B1C1D1中(1)求证:平面A1BD平面B1D1C;n(2)若E、F分别是AA1,CC1的中点,求证:平面EB1D1平面FBDA1AB1BC1CD1DGEF例2、n10
2、、如图,在正方体 ABCDA1B1C1D1 中,E、F、G分别是AB、AD、C1D1的中点.n求证:平面D1EF平面BDG.n(6)两平面垂直的判定n定义:两个平面相交,如果所成的二面角是直二面角,那么这两个平面互相垂直,即二面角a=90.n如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,即若l,l,则.n一个平面垂直于两个平行平面中的一个,也垂直于另一个.即若,则.例3、n已知四棱锥PABCD,底面ABCD是菱形,n 平面ABCD,PD=AD,n点E为AB中点,点F为PD中点.n (1)证明平面PED平面PAB;PDDAB,60例4、n在四面体中在四面体中ABCD,且,且E、F
3、分别是分别是AB、BD的中点,的中点,n()求证:直线)求证:直线EF/面面ACDn(II)求证:面)求证:面EFC面面BCDBCAFDEBDADCDCB ,六、直线在平面内的判定n(1)利用公理1:一直线上不重合的两点在平面内,则这条直线在平面内.n(2)若两个平面互相垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,即若,A,AB,则AB.n(3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面内,即若Aa,ab,A,b,则a.n(4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面内,即若P,P,Pa,a,则a.n(5)如果一条直线与一
4、个平面平行,那么过这个平面内一点与这条直线平行的直线必在这个平面内,即若a,A,Ab,ba,则b.七、存在性和唯一性定理n(1)过直线外一点与这条直线平行的直线有且只有一条;n(2)过一点与已知平面垂直的直线有且只有一条;n(3)过平面外一点与这个平面平行的平面有且只有一个;n(4)与两条异面直线都垂直相交的直线有且只有一条;n(5)过一点与已知直线垂直的平面有且只有一个;n(6)过平面的一条斜线且与该平面垂直的平面有且只有一个;n(7)过两条异面直线中的一条而与另一条平行的平面有且只有一个;n(8)过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.九、射影及有关性质n(1)点
5、在平面上的射影自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点.n(2)直线在平面上的射影自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影.n和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.n(3)图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.n当图形所在平面与射影面垂直时,射影是一条线段;n当图形所在平面不与射影面垂直时,射影仍是一个图形.n(4)射影的有关性质n从平面外一点向这个平面所引的垂线段和斜线段中:n(i)射影相等的两条斜线段相等,射影较长的斜线段也较长;n(ii)相等
6、的斜线段的射影相等,较长的斜线段的射影也较长;n(iii)垂线段比任何一条斜线段都短.高考题练习n1(本小题满分12分)n如图:已知直三棱柱ABCA1B1C1,ABAC,F为棱BB1上一点,BF FB12 1,BFBC2a。n(I)若D为BC的中点,E为AD上不同于A、D的任意一点,证明EFFC1;n2.在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP.n设O点在平面D1AP上的射影是H,求证:D1HAP;B1PACDA1C1D1BOHn3如图,在四棱锥 中,底面ABCD是正方形,侧棱 底面ABCD,E是PC的中点,作 交PB
7、于点F。(I)证明 平面 EDB ;(II)证明 平面EFD;n4、如图,在棱长为1的正方体ABCDA1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点.n(I)试确定点F的位置,使得D1E平面AB1F;n5、已知长方体ABCDA1B1C1D1中,AB=BC=4,AA1=8,E、F分别为AD和CC1的中点,O1为下底面正方形的中心。n ()证明:AF平面FD1B1;ABDCA1D1C1B1EFO1Hn6、04(19)如图,已知正方形)如图,已知正方形ABCD和矩和矩形形ACEF所在的平面互相垂直,所在的平面互相垂直,n AB=根号根号2,AF=1,M是线段是线段EF的中点的中点.n()
8、求证)求证AM平面平面BDE;n(II)求证)求证AM平面平面BDF;n7、06(17)如图,在四棱锥)如图,在四棱锥 中,中,底面为直角梯形,底面为直角梯形,n,底底 面面ABCD,且,且 n ,M、N分别为分别为PC,PB的中点的中点.n()求证求证 ;ABCDP 90,/BADBCADPABCABADPA2 DMPB n8、07(20)在如图所示的几何体中,在如图所示的几何体中,平面平面ABC,平面平面ABC,且且 ,n M是是AB的中点的中点n(I)求证)求证:;EA DBBCAC AEBDBCAC2 EMCM AEDCBMn9、08(20)如图如图,矩形矩形ABCD和梯形和梯形BEF
9、C所所在平面互相垂直,在平面互相垂直,BE/CF,n角角BCF=角角CEF=90度度,AD=根号根号3,EF=2。n()求证:)求证:AE/平面平面DCF;ABCDEF预测题定向提高练习n预测(预测(1)线面平行线面平行+线面垂直线面垂直n已知线段已知线段 矩形矩形ABCD所在平面,所在平面,M、N分别是分别是AB,PC的中点。的中点。n()求证:)求证:平面平面PAD;n(II)当)当 时,求证:时,求证:平面平面PCD。PA/MN45PDA MNPNCAMBDn预测(预测(2)线面平行线面平行+线面垂直线面垂直n如图,已知正三棱柱如图,已知正三棱柱 中,中,点,点D为为 A1C1 的中的中
10、点。(点。()求证:)求证:平面平面AB1D;n(II)求证:)求证:平面平面AB1D。/1BC CA1111CBAABC 12AAAB C1B1A1DCABn预测预测(3)线线垂直线线垂直+线面平行线面平行n如图,在四棱锥如图,在四棱锥 中,中,n()求证:)求证:;n(II)试在线段)试在线段PB上找一点上找一点M,使,使 平面平面PAD,并说明理由。,并说明理由。ABCDP .,21,/PCBCABDCADABADABCD BCPA/CMPDCBAn预测(预测(4)线面垂直线面垂直+线面平行线面平行+线面角线面角n如图,在四棱锥如图,在四棱锥 中,底面中,底面ABCD是正方形,侧面是正方形,侧面 底面底面 ABCD,且,且PD与底面与底面ABCD 所所成的角为成的角为45度。度。n()求证:)求证:平面平面PDC;n(II)已知)已知E为棱为棱AB的中点,问在棱的中点,问在棱PD上上是否存在一点是否存在一点Q,使,使EQ平行于平面平行于平面PBC?若存在,写出点若存在,写出点Q的位置,并证明你的结论;的位置,并证明你的结论;若不存在,试说明理由。若不存在,试说明理由。ABCDPPADPDPA PAPDCBA