1、第五章 相交线与平行线5.3 平行线的性质5.3.2 命题、定理、证明 1.理解命题,定理及证明的概念,会区分命题的题设 和结论;(重点)2.会判断真假命题,知道证明的意义及必要性,了 解反例的作用.(重点、难点)学习目标 下列语句在表述形式上,有什么共同特点?(1)如果两条直线都与第三条直线平行,那么这 两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边都加同一个数,结果仍是等式你的发现:这些语句都是对一件事情作出了判断.2.如果一个句子没有对某一件事情作出任何判断,那么 它就不是命题.如:画线段AB=CD.1.只要对一件事情作出了判断,不管
2、正确与否,都是命题.如:相等的角是对顶角.注意:像这样判断一件事情的语句,叫作命题(proposition).命题的概念 例1 判断下列四个语句中,哪个是命题,哪个不是命题?并说明理由:(1)对顶角相等吗?(2)画一条线段AB=2cm;(3)两条直线平行,同位角相等;(4)相等的两个角,一定是对顶角.解:(3)(4)是命题,(1)(2)不是命题.理由如下:(1)是问句,故不是命题;(2)是做一件事情,也不是命题.观察下列命题,你能发现这些命题有什么共同的结构特征?与同伴交流.(1)如果两个三角形的三条边相等,那么这两个三角形的周长相等;(2)如果两个数的绝对值相等,那么这两个数也相等;(3)如
3、果一个数的平方等于9,那么这个数是3.命题的结构命题一般都可以写成“如果那么”的形式.1.“如果”后接的部分是题设;2.“那么”后接的部分是结论.注意:添加“如果”“那么”后,命题的意义不能改变,改写的句子要完整,语句要通顺,使命题的题设和结论更明朗,易于分辨,改写过程中,要适当增加词语,切不可生搬硬套.命题题设结论已知事项由已知事项推出的事项 两直线平行,同位角相等题设(条件)结论命题的组成:把下列命题改写成“如果那么”的形式.并指出它的题设和结论.1.对顶角相等;2.内错角相等;3.两直线被第三条直线所截,同位角相等;4.同平行于一直线的两直线平行;5.等角的补角相等.特别规定:正确的命题
4、叫真命题,错误的命题叫假命题.命题1:“如果一个数能被4整除,那么它也能被2整除”真命题与假命题观察下列命题,你能发现这些命题有什么不同的特点吗?命题1是一个正确的命题;命题2是一个错误的命题.命题2:“如果两个角互补,那么它们是邻补角”(1)同旁内角互补()(4)两点可以确定一条直线()(7)互为邻补角的两个角的平分线互相垂直()(2)一个角的补角大于这个角()判断下列命题的真假.真的用“”,假的用“表示.(5)两点之间线段最短()(3)相等的两个角是对顶角()(6)同角的余角相等()公理的概念:数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样
5、的真命题叫做公理.证明与举反例定理的概念:有些命题是基本事实,还有些命题它们的正确性是经过推理证实的,这样得到的真命题叫做定理.定理也可以作为继续推理的依据.证明的概念:在很多情况下,一个命题的正确性需要经过推理才能作出判断,这个推理过程叫作证明.例2 已知:bc,ab 求证:ac证明:a b(已知)1=90(垂直的定义)又 b c(已知)2=1=90(两直线平行,同位角相等)a c(垂直的定义).abc12确定一个命题是假命题的方法:例如,要判定命题“相等的角是对顶角”是假命题,可以举出如下反例:如图,OC是AOB的平分线,1=2,但它们不是对顶角.)12AOCB只要举出一个例子(反例):它
6、符合命题的题设,但不满足结论即可.思考:如何判定一个命题是假命题呢?举反例1.下列语句中,不是命题的是()A.两点之间线段最短 B.对顶角相等 C.不是对顶角不相等 D.过直线AB外一点P作直线AB的垂线D2.下列命题中,是真命题的是()A.若ab0,则a0,b0 B.若ab0,则a0,b0 C.若ab0,则a0且b0 D.若ab0,则a0或b0D3.举反例说明下列命题是假命题 (1)若两个角不是对顶角,则这两个角不相等;(2)若ab0,则ab0.解:(1)两条直线平行形成的内错角,这两个角不 是对顶角,但是它们相等;(2)当a5,b0时,ab0,但ab0.证明:ABCD(已知),BPQCQP
7、 (两直线平行,内错角相等)又PG平分BPQ,QH平分CQP(已知),GPQ BPQ,HQP CQP(角平 分线的定义),GPQHQP(等量代换),PGHQ(内错角相等,两直线平行)21214.如图,已知ABCD,直线AB,CD被直线MN所截,交点分别为P,Q,PG平分BPQ,QH平分CQP,求证:PGHQ.ABCDMNPQHG通过今天的学习通过今天的学习,能说说你的收获和体会吗能说说你的收获和体会吗?你有什么经验与收获让同学们共享呢?你有什么经验与收获让同学们共享呢?回顾与反思真命题假命题公理定理(只需举一个反例)(不需证明)(由推理证实)判断一件事情的句子题设(如果引导的句子)命题定义组成结论(那么引导的句子)分类