1、2、运用公式法进行因式分解【知识精读】 把乘法公式反过来,就可以得到因式分解的公式。 主要有:平方差公式 完全平方公式 立方和、立方差公式 补充:欧拉公式: 特别地:(1)当时,有 (2)当时,欧拉公式变为两数立方和公式。 运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。但有时需要经过适当的组合、变形后,方可使用公式。 用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。因此,正确掌握公式法因式分解,熟练灵活地运用它,对今后的学习很有帮助。下面我们就来学习用公式法进行因式分解【分类解析】 1. 把分解因式的结果是( ) A. B. C. D. 分析:。 再
2、利用平方差公式进行分解,最后得到,故选择B。说明:解这类题目时,一般先观察现有项的特征,通过添加项凑成符合公式的形式。同时要注意分解一定要彻底。 2. 在简便计算、求代数式的值、解方程、判断多项式的整除等方面的应用 例:已知多项式有一个因式是,求的值。 分析:由整式的乘法与因式分解互为逆运算,可假设另一个因式,再用待定系数法即可求出的值。 解:根据已知条件,设 则 由此可得 由(1)得 把代入(2),得 把代入(3),得 3. 在几何题中的应用。 例:已知是的三条边,且满足,试判断的形状。 分析:因为题中有,考虑到要用完全平方公式,首先要把转成。所以两边同乘以2,然后拆开搭配得完全平方公式之和
3、为0,从而得解。 解: 为等边三角形。 4. 在代数证明题中应用 例:两个连续奇数的平方差一定是8的倍数。 分析:先根据已知条件把奇数表示出来,然后进行变形和讨论。 解:设这两个连续奇数分别为(为整数) 则 由此可见,一定是8的倍数。5、中考点拨: 例1:因式分解:_。 解: 说明:因式分解时,先看有没有公因式。此题应先提取公因式,再用平方差公式分解彻底。 例2:分解因式:_。 解: 说明:先提取公因式,再用完全平方公式分解彻底。题型展示: 例1. 已知:, 求的值。 解: 原式 说明:本题属于条件求值问题,解题时没有把条件直接代入代数式求值,而是把代数式因式分解,变形后再把条件带入,从而简化
4、计算过程。 例2. 已知, 求证: 证明: 把代入上式, 可得,即或或 若,则, 若或,同理也有 说明:利用补充公式确定的值,命题得证。 例3. 若,求的值。 解: 且 又 两式相减得 所以 说明:按常规需求出的值,此路行不通。用因式分解变形已知条件,简化计算过程。【实战模拟】 1. 分解因式:(1) (2)(3)2. 已知:,求的值。3. 若是三角形的三条边,求证:4. 已知:,求的值。 5. 已知是不全相等的实数,且,试求 (1)的值;(2)的值。【试题答案】 1. (1)解:原式 说明:把看成整体,利用平方差公式分解。 (2)解:原式 (3)解:原式 2. 解: 3. 分析与解答:由于对三角形而言,需满足两边之差小于第三边,因此要证明结论就需要把问题转化为两边差小于第三边求得证明。 证明: 是三角形三边 且 即 4. 解 ,即 5. 分析与解答:(1)由因式分解可知 故需考虑值的情况,(2)所求代数式较复杂,考虑恒等变形。 解:(1) 又 而 不全相等 (2) 原式 而,即 原式 说明:因式分解与配方法是在代数式的化简与求值中常用的方法。- 11 -