1、【压轴卷】数学中考模拟试卷(带答案)一、选择题1如图所示,已知A(,y1),B(2,y2)为反比例函数图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是( )A(,0)B(1,0)C(,0)D(,0)2下列计算正确的是( )A2a3b5abB( ab )2a 2b 2C( 2x 2 )36x 6Dx8x3x53函数中自变量x的取值范围是( )A3B3且CD且4已知,则A( )ABCDx215如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿大半圆弧ACB路线爬行,乙虫沿小半圆弧ADA1、A1EA2、A2FA3、A3
2、GB路线爬行,则下列结论正确的是 ( )A甲先到B点B乙先到B点C甲、乙同时到B点D无法确定6某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A7分B8分C9分D10分7如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4xx2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A当小球抛出高度达到7.5m时,小球水平距O点水平距离为3mB小球距O点水平距离超过4米呈下降趋势C小球落地点距O点水平距离为7米D斜坡的坡度为1:28某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图
3、是 ( )ABCD9分式方程的解为( )ABCD无解10如图,O为坐标原点,菱形OABC的顶点A的坐标为,顶点C在轴的负半轴上,函数的图象经过顶点B,则的值为( )ABCD11下列分解因式正确的是( )ABCD12如图,在矩形ABCD中,BC=6,CD=3,将BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为( )A3BC5D二、填空题13如果a是不为1的有理数,我们把称为a的差倒数如:2的差倒数是,-1的差倒数是,已知,是的差倒数,是的差倒数,是的差倒数,依此类推,则 _ 14如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方
4、距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.15如图,在四边形ABCD中,BD90,AB3, BC2,tanA,则CD_16如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为_.17计算:2cos45(+1)0+=_18分式方程+=1的解为_.19如图,在矩形 MNPQ 中,动点 R 从点 N 出发,沿 NPQM 方向运动至点 M 处停止,设点 R 运动的路程为 x,MNR 的面积为 y,如果 y 关于 x 的函数图象如图所示,则矩形 MNPQ
5、 的面积是_20分解因式:2x218_三、解答题21垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对本校甲、乙两班各60名学生进行了垃极分类相关知识的测试,并分别随机抽取了15份成绩,整理分析过程如下,请补充完整(收集数据)甲班15名学生测试成绩统计如下:(满分100分)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80乙班15名学生测试成绩统计如下:(满分100分)86,89,83,76,73,78,67,80,80,79,80,84,82,80,
6、83(整理数据)按如下分数段整理、描述这两组样本数据组别班级65.670.570.575.575.580.580.585.585.590.590.595.5甲班224511乙班11ab20在表中,a ,b (分析数据)(1)两组样本数据的平均数、众数、中位数、方差如下表所示:班级平均数众数中位数方差甲班80x8047.6乙班8080y26.2在表中:x ,y (2)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃圾分类相关知识合格的学生有 人(3)你认为哪个班的学生掌握垃圾分类相关知识的情况较好,说明理由22小慧和小聪沿图中的景区公路游览小慧乘坐车速为30 km/h的电动汽
7、车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆小聪骑车从飞瀑出发前往宾馆,速度为20 km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点上午10:00小聪到达宾馆图中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB,GH的交点B的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30 km/h的速度按原路返回,那么返回途中他几点钟遇见小慧?23如图,AB为O的直径,C为O上一点,ABC的平分线交O于点D,DEBC于点E(1)试判断DE与O的位置关系,并说明理由;(2)过点D作DF
8、AB于点F,若BE=3,DF=3,求图中阴影部分的面积24修建隧道可以方便出行.如图:,两地被大山阻隔,由地到地需要爬坡到山顶地,再下坡到地.若打通穿山隧道,建成直达,两地的公路,可以缩短从地到地的路程.已知:从到坡面的坡度,从到坡面的坡角,公里.(1)求隧道打通后从到的总路程是多少公里?(结果保留根号)(2)求隧道打通后与打通前相比,从地到地的路程约缩短多少公里?(结果精确到0.01)(,)25某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结
9、果统计后绘制成了如图所示的不完整的统计图(1)这次被调查的同学共有 人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐【参考答案】*试卷处理标记,请不要删除一、选择题1D解析:D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在ABP中,|AP-BP|AB,延长AB交x轴于P,当P在P点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的
10、交点坐标即可【详解】把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=, A(,2),B(2,),在ABP中,由三角形的三边关系定理得:|AP-BP|AB,延长AB交x轴于P,当P在P点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:,解得:k=-1,b=,直线AB的解析式是y=-x+,当y=0时,x=,即P(,0),故选D【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度2D解析:D【解析】分析:A原式不能合并,错误; B原
11、式利用完全平方公式展开得到结果,即可做出判断; C原式利用积的乘方运算法则计算得到结果,即可做出判断;D原式利用同底数幂的除法法则计算得到结果,即可做出判断详解:A不是同类项,不能合并,故A错误; B(ab)2=a22ab+b2,故B错误; C( 2x 2 )38x 6,故C错误;Dx8x3x5,故D正确 故选D点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解答本题的关键3B解析:B【解析】分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解
12、解答:解:0,x+30,x-3,x-10,x1,自变量x的取值范围是:x-3且x1故选B4B解析:B【解析】【分析】由题意可知A=,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果【详解】解:A=故选B.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键5C解析:C【解析】(AA1+A1A2+A2A3+A3B)= AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点。故选C.6B解析:B【解析】【分析】根据平均数的定义进行求解即可得【详解】根据折线图可知该球员4节的得分分别为:12、4、10、6,所以该球员平均每节
13、得分=8,故选B【点睛】本题考查了折线统计图、平均数的定义等知识,解题的关键是理解题意,掌握平均数的求解方法7A解析:A【解析】分析:求出当y=7.5时,x的值,判定A;根据二次函数的性质求出对称轴,根据二次函数性质判断B;求出抛物线与直线的交点,判断C,根据直线解析式和坡度的定义判断D详解:当y=7.5时,7.5=4xx2,整理得x28x+15=0,解得,x1=3,x2=5,当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m或5侧面cm,A错误,符合题意;y=4xx2=(x4)2+8,则抛物线的对称轴为x=4,当x4时,y随x的增大而减小,即小球距O点水平距离超过4米呈下降趋势,B正
14、确,不符合题意;,解得,则小球落地点距O点水平距离为7米,C正确,不符合题意;斜坡可以用一次函数y=x刻画,斜坡的坡度为1:2,D正确,不符合题意;故选:A点睛:本题考查的是解直角三角形的坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键8A解析:A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A9D解析:D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解详解:去分母得:x2+2xx2x+2=3,解得:x=1,经检验x=1是增根,分式方程无解 故选D点睛:本题考查了分式方程的解,始终注意分母不
15、为0这个条件10C解析:C【解析】【分析】【详解】A(3,4),OA=5,四边形OABC是菱形,AO=CB=OC=AB=5,则点B的横坐标为35=8,故B的坐标为:(8,4),将点B的坐标代入得,4=,解得:k=32故选C考点:菱形的性质;反比例函数图象上点的坐标特征11C解析:C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案注意分解要彻底【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式注意因式分解的步骤:先提公因式,再用公式法分解注意分解要彻底 12C
16、解析:C【解析】【分析】【详解】解:根据题意易证BE=DE,设ED=x,则AE=8x,在ABE中根据勾股定理得到关于线段AB、AE、BE的方程x2=42+(8x)2,解方程得x=5,即ED=5故选C【点睛】本题考查翻折变换(折叠问题);勾股定理;方程思想二、填空题13【解析】【分析】利用规定的运算方法分别算得a1a2a3a4找出运算结果的循环规律利用规律解决问题【详解】a1=4a2=a3=a4=数列以4三个数依次不断循环20193=673a2019解析:.【解析】【分析】利用规定的运算方法,分别算得a1,a2,a3,a4找出运算结果的循环规律,利用规律解决问题.【详解】a1=4a2=,a3=,
17、a4=,数列以4,三个数依次不断循环,20193=673,a2019=a3=,故答案为:.【点睛】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.145【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答【详解】以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,由题意可得A(0,2.5),B(2,2.5),C(0.5,
18、1)设函数解析式为y=ax2+bx+c把A. B.C三点分别代入得出c=2.5同时可得4a+2b+c=2.5,0.25a+0.5b+c=1解得a=2,b=4,c=2.5.y=2x24x+2.5=2(x1)2+0.5.20当x=1时,ymin=0.5米.15【解析】【分析】延长AD和BC交于点E在直角ABE中利用三角函数求得BE的长则EC的长即可求得然后在直角CDE中利用三角函数的定义求解【详解】如图延长ADBC相交于点EB=90BE=解析:【解析】【分析】延长AD和BC交于点E,在直角ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角CDE中利用三角函数的定义求解【详解】如图,延
19、长AD、BC相交于点E,B=90,BE=,CE=BE-BC=2,AE=,又CDE=CDA=90,在RtCDE中,CD=.16-6【解析】因为四边形OABC是菱形所以对角线互相垂直平分则点A和点C关于y轴对称点C在反比例函数上设点C的坐标为(x)则点A的坐标为(x)点B的坐标为(0)因此AC=2xOB=根据菱形的面积等解析:-6【解析】因为四边形OABC是菱形,所以对角线互相垂直平分,则点A和点C关于y轴对称,点C在反比例函数上,设点C的坐标为(x,),则点A的坐标为(x,),点B的坐标为(0,),因此AC=2x,OB=,根据菱形的面积等于对角线乘积的一半得:,解得17【解析】解:原式=故答案为
20、:解析:【解析】解:原式= 故答案为:18【解析】【分析】根据解分式方程的步骤即可解答【详解】方程两边都乘以得:解得:检验:当时所以分式方程的解为故答案为【点睛】考查了解分式方程解分式方程的基本思想是转化思想把分式方程转化为整式方程求解解分解析:【解析】【分析】根据解分式方程的步骤,即可解答【详解】方程两边都乘以,得:,解得:,检验:当时,所以分式方程的解为,故答案为【点睛】考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根1920【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x=4时点R到达Px=9时点R到Q点则PN=4
21、QP=5矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达解析:20【解析】【分析】根据图象横坐标的变化,问题可解【详解】由图象可知,x=4时,点R到达P,x=9时,点R到Q点,则PN=4,QP=5矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化解答时, 要注意数形结合202(x+3)(x3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式2(x29)2(x+3)(x3)故答案为:2(x+3)(x3)【点睛】此题考查了提公因式法与公式法的综合解析:2(x+3)(x3)【解析】【分析】原式提取2,再
22、利用平方差公式分解即可【详解】原式2(x29)2(x+3)(x3),故答案为:2(x+3)(x3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键三、解答题21【整理数据】:7,4;【分析数据】(1)85,80;(2)40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,见解析.【解析】【分析】由收集的数据即可得;(1)根据众数和中位数的定义求解可得;(2)用总人数乘以乙班样本中合格人数所占比例可得;(3)甲、乙两班的方差判定即可【详解】解:乙班75.580.5分数段的学生数为7,80.585.5分数段的学生数为4,故a7,b4,故答案为:7,4;(1)
23、68,72,89,85,82,85,74,92,80,85,78,85,69,76,80,众数是x85,67,73,76,78,79,80,80,80,80,82,83,83,84,86,89,中位数是y80,故答案为:85,80;(2)6040(人),即合格的学生有40人,故答案为:40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,甲班的方差乙班的方差,乙班的学生掌握垃圾分类相关知识的整体水平较好【点睛】本题考查了频数分布直方图,众数,中位数,正确的理解题意是解题的关键22(1)小聪上午7:30从飞瀑出发;(2)点B的实际意义是当小慧出发1.5 h时,小慧与小聪相遇,且离宾馆的路程为
24、30 km.;(3)小聪到达宾馆后,立即以30 km/h的速度按原路返回,那么返回途中他11:00遇见小慧【解析】【分析】(1)由时间=路程速度,可得小聪骑车从飞瀑出发到宾馆所用时间为:5020=2.5(小时),从10点往前推2.5小时,即可解答;(2)先求GH的解析式,当s=30时,求出t的值,即可确定点B的坐标;(3)根据5030=(小时)=1小时40分钟,确定当小慧在D点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x小时后两人相遇,根据题意得:30x+30(x)=50,解得:x=1,10+1=11点,即可解答【详解】(1)小聪骑车从飞瀑出发到宾馆所用时间
25、为:5020=2.5(小时),上午10:00小聪到达宾馆,小聪上午7点30分从飞瀑出发(2)32.5=0.5,点G的坐标为(0.5,50),设GH的解析式为,把G(0.5,50),H(3,0)代入得;,解得:,s=20t+60,当s=30时,t=1.5,B点的坐标为(1.5,30),点B的实际意义是当小慧出发1.5小时时,小慧与小聪相遇,且离宾馆的路程为30km;(3)5030=(小时)=1小时40分钟,12=,当小慧在D点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x小时后两人相遇,根据题意得:30x+30(x)=50,解得:x=1, 10+1=11=11点
26、,小聪到达宾馆后,立即以30km/h的速度按原路返回,那么返回途中他11点遇见小慧23(1)DE与O相切,理由见解析;(2)阴影部分的面积为2【解析】【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出DEB=EDO=90,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案【详解】(1)DE与O相切,理由:连接DO,DO=BO,ODB=OBD,ABC的平分线交O于点D,EBD=DBO,EBD=BDO,DOBE,DEBC,DEB=EDO=90,DE与O相切;(2)ABC的平分线交O于点D,DEBE,DFAB,DE=DF=3,BE=3,BD=6,sinDBF=,DBA=30
27、,DOF=60,sin60=,DO=2,则FO=,故图中阴影部分的面积为:【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键24(1)隧道打通后从到的总路程是公里;(2)隧道打通后与打通前相比,从地到地的路程约缩短2.73公里.【解析】【分析】(1)过点C作CDAB于点D,利用锐角三角函数的定义求出CD及AD的长,进而可得出结论(2)由坡度可以得出的度数,从而得出AC的长,根据即可得出缩短的距离.【详解】(1)作于点,在中,.在中,公里.答:隧道打通后从到的总路程是公里.(2)在中,.,(公里).答:隧道打通后与打通前相比,从地到地的路程约缩短2.73公里.
28、【点睛】本题考查的是解直角三角形的应用-坡度问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记坡度和锐角三角函数的定义25(1)1000,(2)答案见解析;(3)900.【解析】【分析】(1)结合不剩同学的个数和比例,计算总体个数,即可(2)结合总体个数,计算剩少数的个数,补全条形图,即可(3)计算一餐浪费食物的比例,乘以总体个数,即可【详解】解:(1)这次被调查的学生共有60060%1000人,故答案为1000;(2)剩少量的人数为1000(600+150+50)200人,补全条形图如下: (3),答:估计该校18000名学生一餐浪费的食物可供900人食用一餐【点睛】考查统计知识,考查扇形图的理解,难度较容易