1、一、一元二次方程 真题与模拟题分类汇编(难题易错题)1关于x的方程x22(k1)x+k20有两个实数根x1、x2(1)求k的取值范围;(2)若x1+x21x1x2,求k的值【答案】(1);(2)【解析】试题分析:(1)方程有两个实数根,可得代入可解出的取值范围;(2)由韦达定理可知,列出等式,可得出的值试题解析:(1)4(k1)24k20,8k40,k;(2)x1x22(k1),x1x2k2,2(k1)1k2,k11,k23.k,k3.2某建材销售公司在2019年第一季度销售两种品牌的建材共126件,种品牌的建材售价为每件6000元,种品牌的建材售价为每件9000元.(1)若该销售公司在第一季
2、度售完两种建材后总销售额不低于96.6万元,求至多销售种品牌的建材多少件?(2)该销售公司决定在2019年第二季度调整价格,将种品牌的建材在上一个季度的基础上下调,种品牌的建材在上一个季度的基础上上涨;同时,与(1)问中最低销售额的销售量相比,种品牌的建材的销售量增加了,种品牌的建材的销售量减少了,结果2019年第二季度的销售额比(1)问中最低销售额增加,求的值.【答案】(1)至多销售品牌的建材56件;(2)的值是30.【解析】【分析】(1)设销售品牌的建材件,根据售完两种建材后总销售额不低于96.6万元,列不等式求解;(2)根据题意列出方程求解即可.【详解】(1)设销售品牌的建材件.根据题意
3、,得,解这个不等式,得,答:至多销售品牌的建材56件.(2)在(1)中销售额最低时,品牌的建材70件,根据题意,得,令,整理这个方程,得,解这个方程,得,(舍去),即的值是30.【点睛】本题考查了一元二次方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解3按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值.月份用水量(吨)水费(元)四月3559.5五月80151【答案】4小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y(只)与销售单
4、价x(元)之间的关系式为y10x+700(40x55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w元,根据题意得:w(x30)y(x30)(10x+700)10x2+1000x2100010(x50)2+4000a100,当x50时,w取最大值,最大值为4000答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【点睛】本题考查了一元二次函数的实际应用,中
5、等难度,熟悉函数的性质是解题关键.5已知关于x的一元二次方程若此方程有两个实数根,求m的最小整数值;若此方程的两个实数根为,且满足,求m的值【答案】(1)的最小整数值为;(2)【解析】【分析】(1)根据方程有两个实数根得,列式即可求解,(2)利用韦达定理即可解题.【详解】(1)解:方程有两个实数根,即 的最小整数值为(2)由根与系数的关系得:,由得: , 【点睛】本题考查了根的判别式和韦达定理,中等难度,熟悉韦达定理是解题关键.6某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程(1)该项绿化工
6、程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米【解析】【分析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米; (2)设人行道的宽度为x米,根据题意得,(203x)(82x)
7、=56 解得:x=2或x=(不合题意,舍去)答:人行道的宽为2米7已知关于x的方程x2(m2)x(2m1)=0。(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。【答案】(1)见详解;(2)4或4.【解析】【分析】(1)根据关于x的方程x2(m2)x(2m1)=0的根的判别式的符号来证明结论.(2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:当该直角三角形的两直角边是2、3时,当该直角三角形的直角边和斜边分别是2、3时,由勾股定理求出得该直角三角形的另一边,再根据三角形的周长公
8、式进行计算.【详解】解:(1)证明:=(m2)24(2m1)=(m2)24,在实数范围内,m无论取何值,(m2)2+440,即0.关于x的方程x2(m2)x(2m1)=0恒有两个不相等的实数根.(2)此方程的一个根是1,121(m2)(2m1)=0,解得,m=2,则方程的另一根为:m21=2+1=3.当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为,该直角三角形的周长为13=4.当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为;则该直角三角形的周长为13=4.8 1.735=59.5,1.780=136151这家酒店四月份用水量不超过m吨(或水费是
9、按y=1.7x来计算的),五月份用水量超过m吨(或水费是按来计算的)则有151=1.780+(80m)即m280m+1500=0解得m1=30,m2=50又四月份用水量为35吨,m1=3035,m1=30舍去m=50 【解析】9元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超
10、市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)的值为2或7.【解析】【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.【详解】(1)解:设甲、乙两种苹果的进价分别为元/千克, 元/千克. 由题得: 解之得: 答:甲、乙两种苹果的进价分别为10元/千克,8元/千克 (2)由题意得: 解之得:,经检验,均符合题意答:的值为2或7.【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,
11、列方程是解题关键.10关于x的一元二次方程x2(m3)xm2=0(1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为x1,x2,且|x1|=|x2|2,求m的值及方程的根【答案】(1)证明见解析;(2)x1=1+,x2=1或【解析】试题分析:(1)根据一元二次方程的判别式=b24ac的结果判断即可,当0时,有两个不相等的实数根,当=0时,有两个相等的实数根,当0时,方程没有实数根;(2)根据一元二次方程根与系数的关系x1+x2=-,x1x2=,表示出两根的关系,得到x1,x2异号,然后根据绝对值的性质和两根的关系分类讨论即可求解.试题解析:(1)一元二次方程x2(m3)xm2=0,a=1,b=(m3)=3m,c=m2,=b24ac=(3m)241(m2)=5m26m+9=5(m)2+,0,则方程有两个不相等的实数根;(2)x1x2=m20,x1+x2=m3,x1,x2异号,又|x1|=|x2|2,即|x1|x2|=2,若x10,x20,上式化简得:x1+x2=2,m3=2,即m=1,方程化为x2+2x1=0,解得:x1=1+,x2=1,若x10,x20,上式化简得:(x1+x2)=2,x1+x2=m3=2,即m=5,方程化为x22x25=0,解得:x1=1,x2=1+