1、1.了解全等形及全等三角形的概念,掌握全等三 角形的表示方法,理解和掌握全等三角形的性质;重点2.了解对应边和对应角的概念,能准确找到全等 三角形对应边和对应角;难点3.学生通过观察、发现生活中的全等形和实际操作 中获得全等三角形的体验,在探索和运用全等三 角形性质的过程中感受到数学的乐趣学习目标导入新课导入新课观察与思考以下各组图形的形状与大小有什么特点?12345一个图形经过平移、旋转、翻折后得到的图形一定与原图形全等.以下同一类的两个图形是怎样由一个图形得到另一个图形的?它们一定全等吗?像前面一样,能够完全重合的两个图形叫作全等形.讲授新课讲授新课全等图形的认识一EDFEDF全等三角形的
2、对应元素及性质二ABC 像上图一样,把ABC叠到DEF上,能够完全重合的两个三角形,叫作全等三角形.把两个全等的三角形重叠到一起时,重合的顶点叫作对应顶点,重合的边叫作对应边,重合的角叫作对应角.你能指出上面两个全等三角形的对应顶点、对应边、对应角吗?ABCEDF“全等用符号“,表示图中的ABC和DEF全等.全等三角形的表示方法注意记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.图中的全等三角形应该怎么表示?ABCDEFDCOABNMSOT图中有相等的边或角吗?ABCEDFABC DEF(,AB=DE,AC=DF,BC=EF(全等三角形对应边相等,A=D,B=E,C=F(全等三角
3、形对应角相等.全等三角形的对应边相等;全等三角形的对应角相等.全等的性质 请你利用自制的一对全等三角形拼出有公共顶点或公共边或公共角的图形.试用全等符号表示它们,分析每个图形,找准对应边、对应角.ABCDABCDABCD1.有公共边寻找对应边、对应角有什么规律?探究归纳1.有公共边,那么公共边为对应边;2.有公共角对顶角,那么公共角(对顶角)为对应角;3.最大边与最大边最小边与最小边为对应边;最大角与最大角最小角与最小角为对应角;4.对应角的对边为对应边;对应边的对角为对应角.ABCDOABCDOABCDEABDCE2.有公共点总结归纳例 如图,ABC CED,B和 DEC是对应角,BC与ED
4、是对应边,说出另两组对应角和对应边.ABCED解:对应角:A=DCE,D=ACB;对应边:AC=CD,AB=CE.典例精析当堂练习当堂练习1.能够 的两个图形叫做全等形.两个三角形 重合时,互相 的顶点叫做对应顶点.记两个全等三角形时,通常把表示 顶点的字母写在 的位置上.重合重合重合相对应2.如图,ABC ADE,假设D=B,C=AED,那么DAE=;DAB=.BAC EACABCDE学习目标1.学会根据问题的特点,用统计来估计事件发生的 概率,培养分析问题,解决问题的能力;重点2.通过对问题的分析,理解并掌握用频率来估计概 率的方法,渗透转化和估算的思想方法.难点 抛掷一枚均匀的硬币,硬币
5、落下后,会出现两种情况:正面朝上正面朝下 你认为正面朝上和正面朝下的可能性相同吗?导入新课导入新课问题引入(1)同桌两人做20次掷硬币的游戏,并将记录 记载在下表中:频率与概率讲授新课讲授新课做一做 (2)累计全班同学的试验结果,并将实验数据 汇总填入下表:20406080 100 120 140 160 180 2000.501.00.20.7频率实验总次数3根据上表,完成下面的折线统计图.当试验次数很多时当试验次数很多时,正面朝上的频率折线正面朝上的频率折线差不多稳定在差不多稳定在“0.5 水平直线水平直线 上上.(4)观察上面的折线统计图,你发现了什么规律?当实验的次数较少时,折线在“0
6、.5水平直线的上下摆动的幅度较大,随着实验的次数的增加,折线在“0.5水平直线的上下摆动的幅度会逐渐变小.下表列出了一些历史上的数学家所做的掷硬币实验的数据:历史上掷硬币实验历史上掷硬币实验分析试验结果及下面数学家大量重复试验数据,大家有何发现?试验次数越多频率越接近0.5.抛掷次数n0.52048 4040 100001200024000“正面向上”频率 0mn 无论是掷质地均匀的硬币还是掷图钉,在试验次数很大时正面朝上钉尖朝上的频率都会在一个常数附近摆动,这就是频率的稳定性.我们把刻画事件A发生的可能性大小的数值,称为事件A发生的概率,记为P(A).一般的,大量重复的试验中,我们常用随机事
7、件A发生的频率来估计事件A发生的概率.归纳总结 事件A发生的概率P(A)的取值范围是什么?必然事件发生的概率是多少?不可能事件发生的概率又是多少?必然事件发生的概率为1;不可能事件发生的概率为0;随机事件A发生的概率P(A)是0与1之间的一个常数.想一想例 王老师将1个黑球和假设干个白球放入一个不透明的口袋并搅匀,让假设干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据(结果保存两位小数):典例精析解:(1)25110000.25.大量重复试验事件发生的频率逐渐稳定到0.25附近,估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x个,10.25(1+x)
8、,x3.答:估计袋中有3个白球(1)补全上表中的有关数据,根据上表数据估计 从袋中摸出一个球是黑球的概率是多少;(2)估算袋中白球的个数当堂练习当堂练习1.以下事件发生的可能性为0的是A.掷两枚骰子,同时出现数字“6朝上 B.小明从家里到学校用了10分钟,从学校回到家里却用了15分钟 .今天是星期天,昨天必定是星期六.小明步行的速度是每小时千米D 2.口袋中有个球,其中个红球,个蓝球,个白球,在以下事件中,发生的可能性为1 的是 A.从口袋中拿一个球恰为红球 B.从口袋中拿出2个球都是白球 C.拿出6个球中至少有一个球是红球 D.从口袋中拿出的球恰为3红2白C 3.小凡做了5次抛掷均匀硬币的实
9、验,其中有 3次正面朝上,2次正面朝下,他认为正面朝 上的概率大约为 ,朝下的概率为 ,你同 意他的观点吗?你认为他再多做一些实验,结果还是这样吗?3525答:不同意.概率是针对大量重复试验而言的,大量重复试验反映的规律并非在每一次试验中都发生.4.小明抛掷一枚均匀的硬币,正面朝上的概率为 ,那么,抛掷100次硬币,你能保证恰好50次正面朝上吗?12 答:不能,这是因为频数和频率的随机性 以及一定的规律性.或者说概率是针对大量 重复试验而言的,大量重复试验反映的规 律并非在每一次试验中都发生.5.对某批乒乓球的质量进行随机抽查,如下表所示:1完成上表;0.7 0.80.86 0.81 0.82 0.828 0.825