1、学习目标1.了解相似图形和相似比的概念;2.能根据多边形相似进行相关的计算;重点3.会根据条件判断两个多边形是否相似.(难点)问题1 下面两张邮票有什么特点?有什么关系?导入新课导入新课观察与思考问题2 多啦A梦的2寸照片和4寸照片,它的形状改变了吗?大小呢?下面图形有什么相同和不同的地方?讲授新课讲授新课相似图形的概念一问题引导相同点:形状相同不同点:大小不相同.相似图形的概念:形状相同的图形叫做相似图形.注意:相似图形的大小不一定相同.归纳图形的放大相似图形的关系二探究归纳 两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.图形的缩小两个图形相似图形的缩小归纳你看到过哈哈镜吗?
2、哈哈镜中的形象与你本人相似吗?(A)(B)(C)观察与思考 放大镜下的图形和原来的图形相似吗?放大镜下的角与原图形中角是什么关系?练一练相似多边形与相似比三A1B1C1D1E1F1ABCDEF问题1:在这两个多边形中,是否有对应相等的内角?问题2:在这两个多边形中,夹相等内角的两边否成比例?多边形ABCDEF是显示在电脑屏幕上的,而多边形A1B1C1D1E1F1是投射到银幕上的.合作探究各角分别相等、各边成比例的两个多边形叫做相似多边形.相似多边形的对应边的比叫作相似比.相似多边形的对应角相等,对应边成比例.相似比:相似多边形的特征:相似多边形的定义:归纳总结 任意两个等边三角形相似吗?任意两
3、个正方形呢?任意两个正n边形呢?a1a2a3an分析:等边三角形的每个角都为60,三边都相等.所以满足边数相等,对应角相等,以及对应边的比相等.议一议同理,任意两个正方形都相似.归纳:任意两个边数相等的正多边形都相似.a1a2a3an问题:任意的两个菱形或矩形是否相似?为什么?典例精析例1.如图,四边形ABCD和EFGH相似,求角,的大小和EH的长度x.DABC18cm21cm788324cmGEFHx118DABC18cm21cm788324cmGEFHx118在四边形ABCD中,360(7883118)81.C83,AE118解:四边形ABCD和EFGH相似,它们的对应角相等由此可得 四边
4、形ABCD和EFGH相似,它们的对应边的比相等由此可得解得 x28cm.DABC18cm21cm788324cmGEFHx11824,=,2118EHEFxADAB即2.假设ABC与 ABC 相似,且AB:AB=1:2 那么ABC与 ABC的相似比是 ,ABC与ABC的相似比是122练一练1.以下图形中能够确定相似的是 A.两个半径不相等的圆 B.所有的等边三角形C.所有的等腰三角形 D.所有的正方形E.所有的等腰梯形 F.所有的正六边形ABDF 1.观察下面的图形(a)(g),其中哪些是与图形(1)、(2)或3相似的?当堂练习当堂练习 2.如下图的两个四边形是否相似?学习目标1.探索两角分别
5、相等的两个三角形相似的判定定理.2.掌握利用两角来判定两个三角形相似的方法,并 能进行相关计算.(重点、难点)3.掌握判定两个直角三角形相似的方法,并能进行 相关计算.学校举办活动,需要三个内角分别为90,60,30的形状相同、大小不同的三角纸板假设干.小明手上的测量工具只有一个量角器,他该怎么做呢?导入新课导入新课情境引入?讲授新课讲授新课问题一 度量 AB,BC,AC,AB,BC,AC 的长,并计算出它们的比值.你有什么发现?CABABC两角分别相等的两个三角形相似一合作探究 与同伴合作,一人画 ABC,另一人画 ABC,使A=A,B=B,探究以下问题:这两个三角形是相似的证明:在 ABC
6、 的边 AB或 AB 的延长线上,截取 AD=AB,过点 D 作 DE/BC,交 AC 于点 E,那么有ADE ABC,ADE=B.B=B,ADE=B.又 AD=AB,A=A,ADE ABC,ABC ABC.CAABBCDE问题二 试证明ABCABC.由此得到利用两组角判定两个三角形相似的定理:两角分别相等的两个三角形相似.A=A,B=B,ABC ABC.符号语言:CABABC归纳:如图,ABC中,DEBC,EFAB,求证:ADEEFC.AEFBCD证明:DEBC,EFAB,AEDC,AFEC.ADEEFC.练一练证明:在 ABC中,A=40 ,B=80 ,C=180 AB=60.在DEF中,
7、E=80,F=60.B=E,C=F.ABC DEF.例1 如图,ABC 和 DEF 中,A=40,B=80,E=80,F=60 求证:ABC DEF.ACBFED典例精析例2 如图,弦 AB 和 CD 相交于 O 内一点 P,求证:PA PB=PC PD.证明:连接AC,DB.A 和 D 都是弧 CB 所对的圆周角,A=_,同理 C=_,PAC PDB,_ 即PA PB=PC PD.DBPAPCPDPBODCBAP1.如图,在如图,在 ABC 和和 ABC 中,假设中,假设A=60,B =40,A=60,当,当C=时,时,ABC ABC.练一练CABBCA802.如图,如图,O 的弦的弦 AB
8、,CD 相交于点相交于点 P,假设,假设 PA=3,PB=8,PC=4,那么,那么 PD=.6ODCBAP ADAE.ACAB解:EDAB,EDA=90 .又C=90,A=A,AED ABC.判定两个直角三角形相似二例2 如图,在 RtABC 中,C=90,AB=10,AC=8.E 是 AC 上一点,AE=5,EDAB,垂足为D.求AD的长.DABCE 8 54.10AC AEADAB由此得到一个判定直角三角形相似的方法:有一个锐角相等的两个直角三角形相似.归纳:对于两个直角三角形,我们还可以用“HL判定它们全等.那么,满足斜边和一直角边成比例的两个直角三角形相似吗?思考:如图,在 RtABC
9、 和 RtABC 中,C=90,C=90,.求证:RtABC RtABC.ABACA BA C CAABBC要证明两个三角形相似,即是需要证明什么呢?目标:BCABACBCA BAC证明:设_=k,那么AB=kAB,AC=kAB.由 ,得 .Rt ABC Rt ABC.22BCABAC,22.BCABAC .kB CkB C ABACA BA C 勾股定理BCABACB CA BA C CBCAkBAkCBACABCBBC222222 CAABBC由此得到另一个判定直角三角形相似的方法:斜边和一直角边成比例的两个直角三角形相似.归纳:例3 如图,:ACB=ADC=90,AD=2,CD=,当 A
10、B 的长为 时,ACB 与ADC相似2CABD解析:ADC=90,AD=2,CD=,要使这两个直角三角形相似,有两种情况:(1)当 RtABC RtACD 时,有 AC:AD AB:AC,即 :2=AB:,解得 AB=3;22222226.ACADCD66CABD22(2)当 RtACB RtCDA 时,有 AC:CD AB:AC,即 :=AB:,解得 AB=当 AB 的长为 3 或 时,这两个直角三角形相似6263 23 2CABD22 在 RtABC 和 RtABC 中,C=C=90,依据以下各组条件判定这两个三角形是否相似.(1)A=35,B=55:;(2)AC=3,BC=4,AC=6,
11、BC=8:;(3)AB=10,AC=8,AB=25,BC=15:.练一练相似相似相似当堂练习当堂练习1.如图,如图,ABDE,AFC E,那么图中相,那么图中相 似三角形共有似三角形共有 ()A.1对对 B.2对对 C.3对对 D.4对对C2.如图,如图,ABC中,中,AE 交交 BC 于点于点 D,C=E,AD:DE=3:5,AE=8,BD=4,那么,那么DC的长等于的长等于 ()A.154B.125C.203D.174ACABDEABDC3.如图,点 D 在 AB上,当 (或 =)时,ACDABC;ACD ACB B ADC4.如图,在如图,在 RtABC 中,中,ABC=90,BDAC 于于D.假设假设 AB=6,AD=2,那么,那么 AC=,BD=,BC=.18DBCA4 212 2证明:ABC 的高AD、BE交于点F,FEA=FDB=90,AFE=BFD(对顶角相等).FEA FDB,5.如图,ABC 的高 AD、BE 交于点 F 求证:.AFEFBFFD.AFEFBFFDDCABEF证明:BAC=1+DAC,DAE=3+DAC,1=3,BAC=DAE.C=1802DOC,E=1803AOE,DOC=AOE对顶角相等,C=E.ABCADE.6.如图,1=2=3,求证:ABC ADEABCDE132O