1、第一课时:有理数的加法运算第一课时:有理数的加法运算教学目标:教学目标:1、理解加法的意义。、理解加法的意义。2、掌握有理数加法法那么,并能正确运用法那、掌握有理数加法法那么,并能正确运用法那么进么进 行有理数加法的运算。行有理数加法的运算。3、通过对有理数加法法那么的探索,向学生渗、通过对有理数加法法那么的探索,向学生渗透分类讨论、归纳、转化等数学思想方法。透分类讨论、归纳、转化等数学思想方法。教学重点与难点:教学重点与难点:重点:正确运用法那么进行有理数加法的运算。重点:正确运用法那么进行有理数加法的运算。难点:异号两数相加的法那么。难点:异号两数相加的法那么。惠东县铁涌中学惠东县铁涌中学
2、 主备人:梁春少主备人:梁春少 复备人:饶景文、邓小琼,邹灿、魏淑园、复备人:饶景文、邓小琼,邹灿、魏淑园、彭勇创彭勇创 审核人:饶景文审核人:饶景文问题问题:小明在东西方向的马路上活动,我们规定向东为正,向西为负。(1)向东走5米,再向东走3米,两次运动后总的结果是什么?+5+3+8+5+5+3+3=+8=+8-9 -8 -7-6 -5 4 -3 2 -1 0 1 2 3 4 5 6 7 8 9(2)向西走5米,再向西走3米,两次运动后总的结果是什么?同向情况:-3-5-8-5-5+-3-3=-8=-8 结论结论:同号两数相加,取相同的符号,并把绝对值相加。:同号两数相加,取相同的符号,并把
3、绝对值相加。-9 -8 -7-6 -5 4 -3 2 -1 0 1 2 3 4 5 6 7 8 9异向情况:(3)向东走5米,再向西走3米,两次运动后总的结果是什么?+2+5+5+-3-3=+2=+2+5-3-9 -8 -7-6 -5 4 -3 2 -1 0 1 2 3 4 5 6 7 8 9(4)向西走-5米,再向东走3米,两次运动后总的结果是什么?+3-5-2-5-5+3+3=-2=-2 结论结论:绝对值不相等的异号两数相加,取绝对值较大的加:绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。数的符号,并用较大的绝对值减去较小的绝对值。-9 -8 -7
4、-6 -5 4 -3 2 -1 0 1 2 3 4 5 6 7 8 9问题问题:在东西走向的马路上,小明从O点出发,向东走5米,再向西走 5米,两次运动后总的结果是什么?问题3:在东西走向的马路上,小明从O点出发,向西走5米,再向东走0米,两次运动后总的结果是什么?+5+5+-5-5=0=0+5-5结论结论:互为相反数的两个数相加得零。:互为相反数的两个数相加得零。结论结论:一个数同零相加,仍得这个数。:一个数同零相加,仍得这个数。-9 -8 -7-6 -5 4 -3 2 -1 0 1 2 3 4 5 6 7 8 9-5-5-5+0=-5+0=-5-9 -8 -7-6 -5 4 -3 2 -1
5、 0 1 2 3 4 5 6 7 8 9有理数加法法那么1同号两数相加,取相同的符号,并把绝对值相加。2异号两数相加绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.3一个数同0相加,仍得这个数。三、强化理解 总结步骤 (-4)+(-8)=-(4 +8)=-12 同号两数相加 取相同符号 通过绝对值化归 为算术数的加法 (-9)+(+2)=-(9-2)=-7 异号两数相加 取绝对值较大 通过绝对值化归 的加数的符号 为算术数的减法口答判断题:口答判断题:12345强调书写的标准:强调书写的标准:不可出现两个符号不可出现两个符号碰在一起碰在一起例如:例如
6、:四、例题讲解例1、计算。1-3+-9 2解:1-3+-9=-(3+9)=-122 例2、足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数。解:每个队的进球总数记为正数,失球总数记为负数,这两数和的和为这队的净胜球数。红队:4+-2=2黄队:2+-4=-2蓝队:1+-1=0(1)(-6)+(-8);(2)5.2 +(-4.5);(3)+有理数的加法法那么:假设a0,b0,那么a+b=|a|+|b|;假设a0,b0,b|b|,那么a+b=|a|+|b|;假设a0,b0,|a|0,b0,b0,|a|b|,那么a+b 0七、学有所思1、想一想:在有理数的加法运算
7、中,和与加数有什么关系?2、假设|a-2|+|b+3|=0,那么 a=(),b=()轴对称轴对称引言引言对称现象无处不在,从自然景观到艺术作对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!以找到对称的例子,对称给我们带来美的感受!引出新知引出新知探索新知探索新知问题问题1 1如图,把一张纸对折,剪出一个图案折如图,把一张纸对折,剪出一个图案折痕处不要完全剪断,再翻开这张对折的纸,就得到了痕处不要完全剪断,再翻开这张对折的纸,就得到了美丽的窗花观察得到的窗花,你能发现它们有什
8、么共美丽的窗花观察得到的窗花,你能发现它们有什么共同的特点吗?同的特点吗?追问追问你能举出一些轴对称图形的例子吗?你能举出一些轴对称图形的例子吗?探索新知探索新知如果一个平面图形沿一条直线折叠,直线两旁的部如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直分能够互相重合,这个图形就叫做轴对称图形,这条直 线就是它的对称轴这时,我们也说这个图形关于这条线就是它的对称轴这时,我们也说这个图形关于这条 直线成轴对称直线成轴对称共同特征:共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合的图形重合 探索
9、新知探索新知问题问题2 2观察下面每对图形如图,你能类比前观察下面每对图形如图,你能类比前面的内容概括出它们的共同特征吗?面的内容概括出它们的共同特征吗?追问追问1你能再举出一些两个图形成轴对称的例子吗?你能再举出一些两个图形成轴对称的例子吗?探索新知探索新知把一个图形沿着某一条直线折叠,如果它能够与另把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成一个图形重合,那么就说这两个图形关于这条直线成轴对称,这条直线叫做对称轴,折叠后重合的点是对轴对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点应点,叫做对称点 两者的区别:两者的区别:轴对称图形
10、指的是一个图形沿对称轴折叠后这个图轴对称图形指的是一个图形沿对称轴折叠后这个图形的两局部能完全重合,而两个图形成轴对称指的是两形的两局部能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合够重合探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗图形成轴对称有什么区别与联系吗?两者的联系:两者的联系:把成轴对称的两个图形看成一个整体,它就是一个把成轴对称的两个图形看成一个整体,它就是一个轴对称图形把一个轴对称图形沿对称轴分成两
11、个图轴对称图形把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称形,这两个图形关于这条轴对称 探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗图形成轴对称有什么区别与联系吗?追问追问1你能说明其中你能说明其中的道理吗?的道理吗?探索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线 段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问2 2上面的
12、问题说明上面的问题说明“如果如果ABC ABC 和和ABCABC关于直线关于直线MN MN 对称,那么,直线对称,那么,直线MN MN 垂直垂直线段线段AAAA,BBBB和和CCCC,并且直线,并且直线MN MN 还平分线段还平分线段AAAA,BBBB和和CCCC如如果将其中的果将其中的“三角形改为三角形改为“四边形四边形“五边形五边形其其他条件不变,上述结论还成他条件不变,上述结论还成立吗?立吗?ABCMNPABC经过线段中点并且垂直经过线段中点并且垂直于这条线段的直线,叫做这于这条线段的直线,叫做这条线段的垂直平分线条线段的垂直平分线 探索新知探索新知问题问题3如图,如图,ABC 和和AB
13、C关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问3你能用数学语言概括前面的结论吗?你能用数学语言概括前面的结论吗?成轴对称的两个图形的性质:成轴对称的两个图形的性质:如果两个图形关于某条如果两个图形关于某条直线对称,那么对称轴是任直线对称,那么对称轴是任何一对对应点所连线段的垂何一对对应点所连线段的垂直平分线即对称点所连线直平分线即对称点所连线段被对称轴垂直平分;对称段被对称轴垂直平分;对称轴垂直平分对称点所连线段轴垂直平分对称点所连线段
14、 ABCMNPABC结论:结论:直线直线l l 垂直线段垂直线段AAAA,BBBB,直线直线l l平分线段平分线段AAAA,BBBB或直或直线线l l 是线段是线段AAAA,BBBB的垂直平分的垂直平分线线 探索新知探索新知问题问题4 4以下图是一个轴对称图形,你能发现什么以下图是一个轴对称图形,你能发现什么结结 论?能说明理由吗?论?能说明理由吗?ABlAB追问你能用数学语言概括前面追问你能用数学语言概括前面的结论吗?的结论吗?探索新知探索新知问题问题4 4以下图是一个轴对称图形,你能发现什么以下图是一个轴对称图形,你能发现什么结结论?能说明理由吗?论?能说明理由吗?ABlAB轴对称图形的性
15、质:轴对称图形的性质:轴对称图形的对称轴,是任何轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线一对对应点所连线段的垂直平分线 探索新知探索新知问题问题4 4以下图是一个轴对称图形,你能发现什么以下图是一个轴对称图形,你能发现什么结结 论?能说明理由吗?论?能说明理由吗?ABlAB课堂练习课堂练习练习练习1 1如下图的每个图形是轴对称图形吗?如如下图的每个图形是轴对称图形吗?如果是,指出它的对称轴果是,指出它的对称轴 课堂练习课堂练习练习练习2 2如下图的每幅图形中的两个图案是轴对称如下图的每幅图形中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对的吗?如果是,试着找出它们的对称轴,并找出一对对称点称点 1 1本节课学习了哪些主要内容?本节课学习了哪些主要内容?2 2轴对称图形和两个图形成轴对称的区别与联系是轴对称图形和两个图形成轴对称的区别与联系是 什么?什么?3 3成轴对称的两个图形有什么性质?轴对称图形有成轴对称的两个图形有什么性质?轴对称图形有 什么性质?我们是怎么探究这些性质的?什么性质?我们是怎么探究这些性质的?课堂小结课堂小结教科书习题教科书习题13.1第第1、2、3、4、5题题 布置作业布置作业