1、)0(2aaxy函数的性质,图象例例1某涵洞是抛物线形,它的截某涵洞是抛物线形,它的截面如图所示,现测得水面宽面如图所示,现测得水面宽16m,涵洞顶点涵洞顶点O到水面的距离为到水面的距离为24m,在图中直角坐标系内,涵洞所在在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?的抛物线的函数关系式是什么?分析:分析:如图,以如图,以AB的垂直平分线为的垂直平分线为y轴,以过点轴,以过点O的的y轴的垂线为轴的垂线为x轴,建立了直角坐标系这轴,建立了直角坐标系这时,涵洞所在的抛物线的顶点在原点,对称轴时,涵洞所在的抛物线的顶点在原点,对称轴是是y轴,开口向下,所以可设它的函数关系式轴,开口向下,
2、所以可设它的函数关系式是是 此时只需抛物线上的一个点就此时只需抛物线上的一个点就能求出抛物线的函数关系式能求出抛物线的函数关系式)0(2aaxyAB解:如图,以解:如图,以AB的垂直平分线为的垂直平分线为y轴,以过点轴,以过点O的的y轴的垂线为轴的垂线为x轴,建立了直角坐标系。轴,建立了直角坐标系。由题意,得点由题意,得点B的坐标为(的坐标为(08,-24),),又因为点又因为点B在抛物线上,将它的坐标代入在抛物线上,将它的坐标代入 ,得得所以所以因此,函数关系式是因此,函数关系式是)0(2aaxy28.04.2a415a2415xyBA问题问题2一个涵洞成抛物线形,它的截面如图一个涵洞成抛物
3、线形,它的截面如图,现测现测得,当水面宽得,当水面宽AB1.6 m时,涵洞顶点与水面时,涵洞顶点与水面的距离为的距离为2.4 m这时,离开水面这时,离开水面1.5 m处,涵处,涵洞宽洞宽ED是多少?是否会超过是多少?是否会超过1 m?分分 析析根据已知条件,要求根据已知条件,要求ED宽,只要求宽,只要求出出FD的长度在图示的直角坐标系的长度在图示的直角坐标系中,即只要求出点中,即只要求出点D的横坐标的横坐标 因为因为点点D在涵洞所成的抛物线上,又由已在涵洞所成的抛物线上,又由已知条件可得到点知条件可得到点D的纵坐标,所以利的纵坐标,所以利用抛物线的函数关系式可以进一步算用抛物线的函数关系式可以
4、进一步算出点出点D的横坐标你会求吗?的横坐标你会求吗?(1)河北省赵县的赵州桥的桥拱是抛物线河北省赵县的赵州桥的桥拱是抛物线型,建立如图所示的坐标系,其函数的解析式为型,建立如图所示的坐标系,其函数的解析式为 y=-xy=-x2 2,当水位线在当水位线在ABAB位置时,水面宽位置时,水面宽 AB=30AB=30米,这时水面离桥顶的高度米,这时水面离桥顶的高度h h是(是()A A、5 5米米 B B、6 6米;米;C C、8 8米;米;D D、9 9米米练习练习解解:建立如图所示的坐标系建立如图所示的坐标系 (2 2)一座抛物线型拱桥如图所示)一座抛物线型拱桥如图所示,桥下桥下水面宽度是水面宽
5、度是4m,4m,拱高是拱高是2m.2m.当水面下降当水面下降1m1m后后,水面的宽度是多少水面的宽度是多少?(?(结果精确到结果精确到0.1m).0.1m).2.yax可设抛物线表达式为.212xy由此可得函数表达式为).3,(),2,2(xBA点坐标为点坐标为则有A(2,-2)B(X,-3).213,32xy得时当.6x.9.462m水面宽 (3 3)某工厂大门是一抛物线型水泥)某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽建筑物,如图所示,大门地面宽AB=4mAB=4m,顶部顶部C C离地面高度为离地面高度为4 44m4m现有一辆满载现有一辆满载货物的汽车欲通过大门,货物顶部距地面
6、货物的汽车欲通过大门,货物顶部距地面2 28m8m,装货宽度为,装货宽度为2 24m4m请判断这辆汽请判断这辆汽车能否顺利通过大门车能否顺利通过大门某跳水运动员进行某跳水运动员进行10米跳台跳水训练时,身体(看成米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原一点)在空中的运动路线是如图所示坐标系下经过原点点O的一条抛物线(图中标出的数据为已知条件)。的一条抛物线(图中标出的数据为已知条件)。在跳某个规定动作时,正常情况下,该运动员在空中在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面的最高处距水面32/3米,米,入水处距池边的距离为入水处距池边的距离为4
7、米,米,同同 时,运动员在距水面高度为时,运动员在距水面高度为5米米 以前,必须完成规以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失定的翻腾动作,并调整好入水姿势,否则就会出现失误。误。(1)求这条抛物线的解)求这条抛物线的解 析式;析式;(2)在某次试跳中,测得运动员在空中的运动路线)在某次试跳中,测得运动员在空中的运动路线是(是(1)中的抛物线,且运动员在空中调)中的抛物线,且运动员在空中调 整好入水姿整好入水姿势时,距池边的水平势时,距池边的水平 距离为距离为18/5米,问此次跳水会不米,问此次跳水会不会失误?并通过计算说明理由。会失误?并通过计算说明理由。结束寄语生活是
8、数学的源生活是数学的源泉泉.今天今天,你学会了什么你学会了什么?实际问题抽象抽象转化转化数学问题数学问题运用运用数学知识数学知识问题的解问题的解返回解释返回解释检验检验 轴对称轴对称引言引言对称现象无处不在,从自然景观到艺术作对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!以找到对称的例子,对称给我们带来美的感受!引出新知引出新知探索新知探索新知问题问题1如图,把一张纸对折,剪出一个图案(折如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了
9、痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花观察得到的窗花,你能发现它们有什么共美丽的窗花观察得到的窗花,你能发现它们有什么共同的特点吗?同的特点吗?追问追问你能举出一些轴对称图形的例子吗?你能举出一些轴对称图形的例子吗?探索新知探索新知如果一个平面图形沿一条直线折叠,直线两旁的部如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直分能够互相重合,这个图形就叫做轴对称图形,这条直 线就是它的对称轴这时,我们也说这个图形关于这条线就是它的对称轴这时,我们也说这个图形关于这条 直线(成轴)对称直线(成轴)对称共同特征:共同特征:每一对图形沿着虚
10、线折叠,左边的图形都能与右边每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合的图形重合 探索新知探索新知问题问题2观察下面每对图形(如图),你能类比前观察下面每对图形(如图),你能类比前面的内容概括出它们的共同特征吗?面的内容概括出它们的共同特征吗?追问追问1你能再举出一些两个图形成轴对称的例子吗?你能再举出一些两个图形成轴对称的例子吗?探索新知探索新知把一个图形沿着某一条直线折叠,如果它能够与另把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对轴)对
11、称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点应点,叫做对称点 两者的区别:两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称指的是两形的两部分能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合够重合探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗图形成轴对称有什么区别与联系吗?两者的联系:两者的联系:把成轴对称的两个图
12、形看成一个整体,它就是一个把成轴对称的两个图形看成一个整体,它就是一个轴对称图形把一个轴对称图形沿对称轴分成两个图轴对称图形把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称形,这两个图形关于这条轴对称 探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗图形成轴对称有什么区别与联系吗?追问追问1你能说明其中你能说明其中的道理吗?的道理吗?探索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线 段段A
13、A,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问2上面的问题说明上面的问题说明“如果如果ABC 和和ABC关于直线关于直线MN 对称,那么,直线对称,那么,直线MN 垂直垂直线段线段AA,BB和和CC,并且直线,并且直线MN 还平分线段还平分线段AA,BB和和CC”如如果将其中的果将其中的“三角形三角形”改为改为“四边形四边形”“”“五边形五边形”其其他条件不变,上述结论还成他条件不变,上述结论还成立吗?立吗?ABCMNPABC经过线段中点并且垂直经过线段中点并且垂直于这条线段的直线,叫做这于这条线段的直线,叫做这条线段的垂直平分线条线段的垂直
14、平分线 探索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问3你能用数学语言概括前面的结论吗?你能用数学语言概括前面的结论吗?成轴对称的两个图形的性质:成轴对称的两个图形的性质:如果两个图形关于某条如果两个图形关于某条直线对称,那么对称轴是任直线对称,那么对称轴是任何一对对应点所连线段的垂何一对对应点所连线段的垂直平分线即对称点所连线直平分线即对称点所连线段被对称轴垂直平分;对称段被对称轴
15、垂直平分;对称轴垂直平分对称点所连线段轴垂直平分对称点所连线段 ABCMNPABC结论:结论:直线直线l 垂直线段垂直线段AA,BB,直线直线l平分线段平分线段AA,BB(或直(或直线线l 是线段是线段AA,BB的垂直平分的垂直平分线)线)探索新知探索新知问题问题4下图是一个轴对称图形,你能发现什么结下图是一个轴对称图形,你能发现什么结 论?能说明理由吗?论?能说明理由吗?ABlAB追问你能用数学语言概括前面追问你能用数学语言概括前面的结论吗?的结论吗?探索新知探索新知问题问题4下图是一个轴对称图形,你能发现什么结下图是一个轴对称图形,你能发现什么结论?能说明理由吗?论?能说明理由吗?ABlA
16、B轴对称图形的性质:轴对称图形的性质:轴对称图形的对称轴,是任何轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线一对对应点所连线段的垂直平分线 探索新知探索新知问题问题4下图是一个轴对称图形,你能发现什么结下图是一个轴对称图形,你能发现什么结 论?能说明理由吗?论?能说明理由吗?ABlAB课堂练习课堂练习练习练习1 1如图所示的每个图形是轴对称图形吗?如如图所示的每个图形是轴对称图形吗?如果是,指出它的对称轴果是,指出它的对称轴 课堂练习课堂练习练习练习2如图所示的每幅图形中的两个图案是轴对称如图所示的每幅图形中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对的吗?如果是,试着找出它们的对称轴,并找出一对对称点称点 (1)本节课学习了哪些主要内容?)本节课学习了哪些主要内容?(2)轴对称图形和两个图形成轴对称的区别与联系是)轴对称图形和两个图形成轴对称的区别与联系是 什么?什么?(3)成轴对称的两个图形有什么性质?轴对称图形有)成轴对称的两个图形有什么性质?轴对称图形有 什么性质?我们是怎么探究这些性质的?什么性质?我们是怎么探究这些性质的?课堂小结课堂小结教科书习题教科书习题13.1第第1、2、3、4、5题题 布置作业布置作业