1、 认识圆锥认识圆锥圆锥圆锥知多少知多少1.1.圆锥是由一个底面和一个侧面围圆锥是由一个底面和一个侧面围成的成的,它的底面是一个它的底面是一个圆圆,侧面是一,侧面是一个个曲面曲面.2.2.把圆锥底面圆周上的把圆锥底面圆周上的任意一点任意一点与圆锥顶点的与圆锥顶点的连线叫做圆锥的连线叫做圆锥的母线母线 圆锥的再认识圆锥的再认识OPABr rh hL LA1A2问题:问题:圆锥的母线有几条?圆锥的母线有几条?3.3.连结连结顶点顶点与与底面圆心底面圆心 的线段叫做的线段叫做圆锥的高圆锥的高 如图中如图中 是圆锥的一条母线,是圆锥的一条母线,而而h h就是圆锥的高就是圆锥的高 4.4.圆锥的底面半径、
2、圆锥的底面半径、高线、母线长三者之间高线、母线长三者之间间的关系间的关系:222rhl+=OPABr rh hll.圆锥的侧面积和全面积圆锥的侧面积和全面积1、沿着圆锥的母线,把一个圆锥的侧面展开,、沿着圆锥的母线,把一个圆锥的侧面展开,得到一个扇形,这个扇形的弧长与底面的周长有得到一个扇形,这个扇形的弧长与底面的周长有什么关系?什么关系?2、圆锥侧面展开图是扇形,这个扇形的半径与、圆锥侧面展开图是扇形,这个扇形的半径与圆锥中的哪一条线段相等?圆锥中的哪一条线段相等?图 23.3.7 相等相等母线母线探究探究圆锥及侧面展开图的相关概念圆锥及侧面展开图的相关概念OPABrhl 圆锥的侧面积和全面
3、积圆锥的侧面积和全面积 圆锥的圆锥的侧面积侧面积就是弧长为圆锥底面的周就是弧长为圆锥底面的周 长、半径为圆锥的一条母线的长的长、半径为圆锥的一条母线的长的扇形面积扇形面积.圆锥的圆锥的全面积全面积=圆锥的圆锥的侧面积侧面积+底面积底面积.圆锥的侧面积和全面积圆锥的侧面积和全面积如图如图:设圆锥的母线长为设圆锥的母线长为a,底面底面 半径为半径为r.那么圆锥的侧面积那么圆锥的侧面积 公式为:公式为:.221lrS=侧=rl全面积全面积公式为:公式为:SSS底侧全+=r l r2rL2=OPABrhl 根据以下条件求圆锥侧面积展开图的圆心根据以下条件求圆锥侧面积展开图的圆心角角r r、h h、分别
4、是圆锥的底面半径、高线、分别是圆锥的底面半径、高线、母线长母线长1 1 =2 =2,r=1 r=1 那么那么 =_ =_ (2)h=3,r=4 (2)h=3,r=4 那么那么 =_ =_ rhllllrh180288 例例1.一个圆锥形零件的高一个圆锥形零件的高4cm,底面半径底面半径3cm,求这个圆锥形零件,求这个圆锥形零件的侧面积和全面积。的侧面积和全面积。)(cms21532521=侧OPABrhl()224915cmsss=+=+=底侧全解解:如图是一个蒙古包的示意图如图是一个蒙古包的示意图依题意依题意,下部圆柱的底面积下部圆柱的底面积35m35m2 2,高为高为1.5m;1.5m;3
5、.34(m)3.34(m)例例3.3.蒙古包可以近似地看成由圆锥和圆柱蒙古包可以近似地看成由圆锥和圆柱组成的组成的.如果想用毛毡搭建如果想用毛毡搭建2020个个底面积底面积为为35 m35 m2 2,高高为为3.5 m3.5 m,外围高外围高1.5 m1.5 m的蒙古包的蒙古包,至少需要多少至少需要多少m m2 2的毛毡的毛毡?(?(结果精确到结果精确到1 1 m m2 2).).rrh1h2上部圆锥的高为上部圆锥的高为1.5=2 m;1.5=2 m;圆柱圆柱底面圆半径底面圆半径r=r=3535(m)(m)侧面积为侧面积为:31.45(m31.45(m2 2)圆锥的母线长为圆锥的母线长为3.3
6、43.342 2+2+22 23.85(m)3.85(m)侧面展开积扇形的弧长为侧面展开积扇形的弧长为:20.98(m)20.98(m)圆锥侧面积为圆锥侧面积为:40.81(m40.81(m2 2)3.893.8920.9820.981 12 2因此因此,搭建搭建2020个这样的蒙古包至少需要毛毡个这样的蒙古包至少需要毛毡:2020(31.45+40.81)1445(m(31.45+40.81)1445(m2 2)例例4.4.童心玩具厂欲生产一种圣诞老人的帽子童心玩具厂欲生产一种圣诞老人的帽子,其其圆锥形帽身的母线长为圆锥形帽身的母线长为15cm,15cm,底面半底面半 径为径为5cm,5cm
7、,生产这种帽身生产这种帽身1000010000个个,你你 能帮玩具厂算一算至少需多少平方能帮玩具厂算一算至少需多少平方 米的材料吗米的材料吗(不计接缝用料和余料不计接缝用料和余料,取取3.14)?3.14)?解解:l=15 cm,r=5 cm,:l=15 cm,r=5 cm,S S 圆锥侧圆锥侧 =2 2rl rl 235.5 235.510000=2355000(cm10000=2355000(cm2 2)答答:至少需至少需 235.5 235.5 平方米的材料平方米的材料.3.143.1415155 5 =235.5 (cm=235.5 (cm2 2)=15155 5 1 12 2rl例例
8、6.6.如图如图,圆锥的底面半径为圆锥的底面半径为1,1,母线长为母线长为6,6,一只一只蚂蚁要从底面圆周上一点蚂蚁要从底面圆周上一点B B出发出发,沿圆锥侧面爬沿圆锥侧面爬行一圈再回到点行一圈再回到点B,B,问它爬行的最短路线是多少问它爬行的最短路线是多少?ABC61B解解:设圆锥的侧面展开图为扇形设圆锥的侧面展开图为扇形ABBABB,BAB,BAB=n=n l l 弧弧BBBB=2=2 ABBABB是等边三角形是等边三角形答答:蚂蚁爬行的最短路线为蚂蚁爬行的最短路线为6.6.解得解得:n=60:n=60 圆锥底面半径为圆锥底面半径为1,1,连接连接BBBB,即为蚂蚁爬行的最短路线即为蚂蚁爬
9、行的最短路线又又 l l 弧弧BBBB=6n 6n180180 2 2=6n 6n180180 BB BB=AB=6=AB=6 例例7 7、如图,圆锥的底面半径为、如图,圆锥的底面半径为1 1,母线长为,母线长为3 3,一,一只蚂蚁要从底面圆周上一点只蚂蚁要从底面圆周上一点B B出发,沿圆锥侧面爬出发,沿圆锥侧面爬到过母线到过母线ABAB的轴截面上另一母线的轴截面上另一母线ACAC上,问它爬行上,问它爬行的最短路线是多少的最短路线是多少?.323323.3,60.60120360.它爬行的最短路线是答中在垂足为作过点的中点是则点展开成扇形将圆锥沿解:BDABBAD,ABCRtBADlrBBAD
10、AC,BDB,BBC,BABAB:=.323323.3,60.60120360.它爬行的最短路线是答中在垂足为作过点的中点是则点展开成扇形将圆锥沿解:BDABBAD,ABCRtBADlrBBADAC,BDB,BBC,BABAB:.323323.3,60.60120360.它爬行的最短路线是答中在垂足为作过点的中点是则点展开成扇形将圆锥沿解:BDABBAD,ABCRtBADlrBBADAC,BDB,BBC,BABAB:=.323323.3,60.60120360.它爬行的最短路线是答中在垂足为作过点的中点是则点展开成扇形将圆锥沿解:BDABBAD,ABCRtBADlrBBADAC,BDB,BBC
11、,BABAB:=.323323.3,60.60120360.它爬行的最短路线是答中在垂足为作过点的中点是则点展开成扇形将圆锥沿解:BDABBAD,ABCRtBADlrBBADAC,BDB,BBC,BABAB:=.323323.3,60.60120360.它爬行的最短路线是答中在垂足为作过点的中点是则点展开成扇形将圆锥沿解:BDABBAD,ABCRtBADlrBBADAC,BDB,BBC,BABAB:.323323.3,60.60120360.它爬行的最短路线是答中在垂足为作过点的中点是则点展开成扇形将圆锥沿解:BDABBAD,ABCRtBADlrBBADAC,BDB,BBC,BABAB:=AB
12、C.323323.3,60.60120360.它爬行的最短路线是答中在垂足为作过点的中点是则点展开成扇形将圆锥沿解:BDABBAD,ABCRtBADlrBBADAC,BDB,BBC,BABAB:=将圆锥沿将圆锥沿ABAB展开成扇形展开成扇形ABBABB 轴对称轴对称引言引言对称现象无处不在,从自然景观到艺术作对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!以找到对称的例子,对称给我们带来美的感受!引出新知引出新知探索新知探索新知问题问题1 1如图,把一张纸对折,剪出一个图案
13、折如图,把一张纸对折,剪出一个图案折痕处不要完全剪断,再翻开这张对折的纸,就得到了痕处不要完全剪断,再翻开这张对折的纸,就得到了美丽的窗花观察得到的窗花,你能发现它们有什么共美丽的窗花观察得到的窗花,你能发现它们有什么共同的特点吗?同的特点吗?追问追问你能举出一些轴对称图形的例子吗?你能举出一些轴对称图形的例子吗?探索新知探索新知如果一个平面图形沿一条直线折叠,直线两旁的部如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直分能够互相重合,这个图形就叫做轴对称图形,这条直 线就是它的对称轴这时,我们也说这个图形关于这条线就是它的对称轴这时,我们也说这个图
14、形关于这条 直线成轴对称直线成轴对称共同特征:共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合的图形重合 探索新知探索新知问题问题2 2观察下面每对图形如图,你能类比前观察下面每对图形如图,你能类比前面的内容概括出它们的共同特征吗?面的内容概括出它们的共同特征吗?追问追问1你能再举出一些两个图形成轴对称的例子吗?你能再举出一些两个图形成轴对称的例子吗?探索新知探索新知把一个图形沿着某一条直线折叠,如果它能够与另把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成一个图形重合,那么就说这两个图形关于
15、这条直线成轴对称,这条直线叫做对称轴,折叠后重合的点是对轴对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点应点,叫做对称点 两者的区别:两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图轴对称图形指的是一个图形沿对称轴折叠后这个图形的两局部能完全重合,而两个图形成轴对称指的是两形的两局部能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合够重合探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗图形成轴对称有
16、什么区别与联系吗?两者的联系:两者的联系:把成轴对称的两个图形看成一个整体,它就是一个把成轴对称的两个图形看成一个整体,它就是一个轴对称图形把一个轴对称图形沿对称轴分成两个图轴对称图形把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称形,这两个图形关于这条轴对称 探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗图形成轴对称有什么区别与联系吗?追问追问1你能说明其中你能说明其中的道理吗?的道理吗?探索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C
17、分别是点分别是点A,B,C 的对称点,线的对称点,线 段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问2 2上面的问题说明上面的问题说明“如果如果ABC ABC 和和ABCABC关于直线关于直线MN MN 对称,那么,直线对称,那么,直线MN MN 垂直垂直线段线段AAAA,BBBB和和CCCC,并且直线,并且直线MN MN 还平分线段还平分线段AAAA,BBBB和和CCCC如如果将其中的果将其中的“三角形改为三角形改为“四边形四边形“五边形五边形其其他条件不变,上述结论还成他条件不变,上述结论还成立吗?立吗?ABCMNPABC经过线段中
18、点并且垂直经过线段中点并且垂直于这条线段的直线,叫做这于这条线段的直线,叫做这条线段的垂直平分线条线段的垂直平分线 探索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问3你能用数学语言概括前面的结论吗?你能用数学语言概括前面的结论吗?成轴对称的两个图形的性质:成轴对称的两个图形的性质:如果两个图形关于某条如果两个图形关于某条直线对称,那么对称轴是任直线对称,那么对称轴是任何一对对应点所连线
19、段的垂何一对对应点所连线段的垂直平分线即对称点所连线直平分线即对称点所连线段被对称轴垂直平分;对称段被对称轴垂直平分;对称轴垂直平分对称点所连线段轴垂直平分对称点所连线段 ABCMNPABC结论:结论:直线直线l l 垂直线段垂直线段AAAA,BBBB,直线直线l l平分线段平分线段AAAA,BBBB或直或直线线l l 是线段是线段AAAA,BBBB的垂直平分的垂直平分线线 探索新知探索新知问题问题4 4以下图是一个轴对称图形,你能发现什么以下图是一个轴对称图形,你能发现什么结结 论?能说明理由吗?论?能说明理由吗?ABlAB追问你能用数学语言概括前面追问你能用数学语言概括前面的结论吗?的结论
20、吗?探索新知探索新知问题问题4 4以下图是一个轴对称图形,你能发现什么以下图是一个轴对称图形,你能发现什么结结论?能说明理由吗?论?能说明理由吗?ABlAB轴对称图形的性质:轴对称图形的性质:轴对称图形的对称轴,是任何轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线一对对应点所连线段的垂直平分线 探索新知探索新知问题问题4 4以下图是一个轴对称图形,你能发现什么以下图是一个轴对称图形,你能发现什么结结 论?能说明理由吗?论?能说明理由吗?ABlAB课堂练习课堂练习练习练习1 1如下图的每个图形是轴对称图形吗?如如下图的每个图形是轴对称图形吗?如果是,指出它的对称轴果是,指出它的对称轴
21、课堂练习课堂练习练习练习2 2如下图的每幅图形中的两个图案是轴对称如下图的每幅图形中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对的吗?如果是,试着找出它们的对称轴,并找出一对对称点称点 1 1本节课学习了哪些主要内容?本节课学习了哪些主要内容?2 2轴对称图形和两个图形成轴对称的区别与联系是轴对称图形和两个图形成轴对称的区别与联系是 什么?什么?3 3成轴对称的两个图形有什么性质?轴对称图形有成轴对称的两个图形有什么性质?轴对称图形有 什么性质?我们是怎么探究这些性质的?什么性质?我们是怎么探究这些性质的?课堂小结课堂小结教科书习题教科书习题13.1第第1、2、3、4、5题题 布置作业布置作业