1、 徐州近徐州近年真题及拓展年真题及拓展1 考点精讲考点精讲2 重难点分层练重难点分层练3与平行四边形有关的证明与计算与平行四边形有关的证明与计算徐州近徐州近年真题及拓展年真题及拓展1命题点命题点第1题图1.已知已知:如图如图,在在 ABCD中中,点点E、F在在AC上上,且且AE=CF.求证求证:四边形四边形BEDF是平行四边形是平行四边形.四边形四边形ABCD是平行四边形,是平行四边形,OAOC,OBOD.(4分分)AECF,OAAEOCCF,OEOF,(6分分)四边形四边形BEDF是平行四边形是平行四边形(7分分)O证明证明:如图,连接如图,连接BD,交,交AC于点于点O.(2分分)2.如图
2、如图,在在ABC中中,ABC=90,BAC=60,ACD是等边三角形是等边三角形,E是是AC的中点的中点.连接连接BE并延长并延长,交交DC于点于点F.求证求证:(1)ABECFE;第2题图证明证明(1):点点E为为RtABC斜边斜边AC的中点,的中点,AEECBE,ACD为等边三角形,为等边三角形,ACD60,BAC60,BACACD,(2分分)AEBCEF,ABECFE(ASA);(4分分)(2)四边形四边形ABFD是平行四边形是平行四边形.(2)由由(1)知,知,EFCEBA,BAE60,AEBE,ABE是等边三角形,是等边三角形,EFCEBA60,ABCD.又又ADC为等边三角形,为等
3、边三角形,D60,DEFC,ADBF,(6分分)四边形四边形ABFD是平行四边形是平行四边形(7分分)第2题图2命题点命题点与多边形有关的计算与多边形有关的计算3.五边形的内角和为五边形的内角和为 .4.正六边形的每个内角等于正六边形的每个内角等于 .5.若正多边形的一个内角等于若正多边形的一个内角等于 140,则该正多边形的边数是则该正多边形的边数是 .6.如图如图,在正八边形在正八边形ABCDEFGH中中,四边形四边形BCFG的面积为的面积为20cm2,则正八则正八边形的面积为边形的面积为 cm2.第6题图540120940多边形多边形的性质正多边形的性质平行四边形性质面积判定 平行四边形
4、与多边形考点精讲考点精讲【对接教材对接教材】苏科苏科:七下第七下第7章章P28-P35,八下第八下第9章章P64-P73,九上第九上第2章章P77-P82平平行行四四边边形形性质性质边边角角判定判定两组对边分别平行两组对边分别平行:ABCD ,AD .两组对边分别相等两组对边分别相等:AB=DC,=BC两组对角分别相等两组对角分别相等:DAB=,ABC=ADC 四组邻角分别互补四组邻角分别互补:DAB+ABC=,ABC+BCD=.对角线对角线:互相平分互相平分:AO=CO,.对称性对称性:是中心对称图形是中心对称图形,对称中心是对角线的交点对称中心是对角线的交点两组对边分别平行的四边形是平行四
5、边形两组对边分别平行的四边形是平行四边形(定义定义)两组对边分别相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形BCADBCD180180BO=DO平行平行四边四边形形判定判定对角线对角线 的四边形是平行四边形的四边形是平行四边形 一组对边一组对边 的四边形是平行四边形的四边形是平行四边形平行四边形的对角线把平行四边形分成平行四边形的对角线把平行四边形分成4个面积相等的三角形个面积相等的三角形面积面积:S=底底高高互相平分互相平分平行且相等平行且相等多多边边形形多边形多边形的性质的性质内角和定理内角和定理:n(n3)边形的内角和等于边形的内角和等于 .外角和定理外角和定理:多边形的
6、外角和等于多边形的外角和等于 .对角线对角线:过过n(n3)边形的一个顶点可以引边形的一个顶点可以引 条对角线条对角线,n(n3)边边形共有形共有 条对角线条对角线正多边形正多边形的性质的性质正多边形的各边相等正多边形的各边相等,各内角相等各内角相等 正正n(n3)边形的每个外角都等于边形的每个外角都等于 ,每个内角都等于每个内角都等于 (以外角和考虑以外角和考虑)(以内角和考虑以内角和考虑)(n2)180360n3(3)2n n-360n 360180n-(2)180nn-正正n边形有一个外接圆边形有一个外接圆,有一个内切圆有一个内切圆,且它们是同心圆且它们是同心圆 正正n(n3)边形有边形
7、有 条对称轴条对称轴,当当n为奇数时为奇数时,是轴对称图形是轴对称图形,不是中不是中心对称图形心对称图形.当当n为偶数时为偶数时,既是轴对称图形既是轴对称图形,又是中心对称图形又是中心对称图形正多正多边形边形的性的性质质n多多边边形形重难点分层练重难点分层练例例1 如图如图,在在 ABCD中中,对角线对角线AC、BD交于点交于点O.(1)若若ABC=60,则则ADC=,BAD=;(2)若若ABC=60,AB=4,BC=7,则平行四边形则平行四边形ABCD的面积为的面积为 ;(3)若若 BC=7,BD=10,AC=6,则则AD=,AOD的周长为的周长为 .例1题图回顾必备知识回顾必备知识一题多设
8、问一题多设问6012014 3715例例2 如图如图,在四边形在四边形ABCD中中,ADBC,A=C.(1)求证求证:四边形四边形ABCD是平行四边形是平行四边形;一题多设问一题多设问例2题图(1)证明:证明:ADBC,AB180.AC,BC180,ABCD,四边形四边形ABCD是平行四边形;是平行四边形;(1)【判定依据】判定平行四边形的依据是【判定依据】判定平行四边形的依据是_.两组对边分别平行的四边形是平行四边形两组对边分别平行的四边形是平行四边形(2)如图如图,若点若点E为为AB的中点的中点,连接连接DE并延长至点并延长至点F,使得使得EF=DE,连接连接AF,BF,BD.求证求证:四
9、边形四边形ADBF是平行四边形是平行四边形;例2题图(2)证明:证明:点点E为为AB的中点,的中点,AEBE,EFDE,四边形四边形ADBF是平行四边形;是平行四边形;(2)【判定依据】判定平行四边形的依据是【判定依据】判定平行四边形的依据是_.对角线互相平分的四边形是平行四边形对角线互相平分的四边形是平行四边形(3)如图如图,若若G为为CD边上一点边上一点,E为为AB边上一点边上一点,且且CG=AE,连接连接 DE,BG,EG,BD,EG与与BD交于点交于点O.求证求证:四边形四边形DEBG为平行四边形为平行四边形.例2题图(3)证明:由证明:由(1)知四边形知四边形ABCD是平行四边形,是
10、平行四边形,ABCD且且ABCD,CGAE,ABAECDCG,BEDG,四边形四边形DEBG为平行四边形为平行四边形(3)【判定依据】判定平行四边形的依据是【判定依据】判定平行四边形的依据是_.有一组对边平行且相等的四边形是平行四边形有一组对边平行且相等的四边形是平行四边形提升关键能力提升关键能力例例3 如图如图,四边形四边形ABCD是平行四边形是平行四边形,对角线对角线AC、BD交于点交于点O,E为为BC边上一点边上一点,连接连接AE,OE.一题多设问一题多设问例3题图(1)若点若点E为为BC的中点的中点,AB=4,则则OE的长为的长为 ;2(1)【解题依据】利用平行四边形的性质【解题依据】
11、利用平行四边形的性质_平行四边形对角线互相平分平行四边形对角线互相平分(2)如图如图,若若AE是是BAD的平分线的平分线,AEB=65,则则BCD的度数的度数为为 ;(3)若若AB=4,AC=6,BD=10,则则 ABCD的面积为的面积为 ;(4)如图如图,延长延长EO交交AD于点于点F,若若 BC=5,OE=,CD=4,则四边形则四边形FECD的的周长为周长为 ;例3题图321302412例3题图(5)如图如图,若若BAC=90,AEBC,AB=4,BC=6,求求BE的长的长.【解法一】【解法一】(5)BAC90,AEBC,ABCEBA,ABCEBA,BE ;ABBECBAB=4 4863A
12、B ABCB例3题图【解法二】【解法二】BAC90,AEBC,AB4,BC6,AC ,设设BEx,则,则CE6x,在在RtABE中,中,AE2AB2BE216x2,在在RtACE中,中,AE2AC2CE220(6x)2,16x220(6x)2,解得,解得x ,BE的长为的长为 .8383222 5BCAB 例3题图【方法解读】【方法解读】解法一解法一:利用相似三角形求解;利用相似三角形求解;解法二:利用勾股定理求解解法二:利用勾股定理求解体验徐州考法体验徐州考法1.如图如图,在在ABC中中,点点D是是BC的中点的中点,点点E在在ABC内内,且且AE平分平分BAC,CEAE,点点F在边在边AB上
13、上,EFBC.(1)求证求证:四边形四边形BDEF是平行四边形是平行四边形;AECE,AEGAEC90.AE平分平分BAC,BAECAE.在在AEG和和AEC中,中,GAE=CAEAE=AEAEG=AECG第1题图(1)证明:如图,延长证明:如图,延长CE交交AB于点于点G,AEGAEC(ASA),GECE.点点D是边是边BC的中点,的中点,BDCD,DE为为CGB的中位线,的中位线,DEAB.又又EFBC,四边形四边形BDEF是平行四边形;是平行四边形;G第1题图(2)若若AB=8,AC=5,求求BF的长的长.(2)解:如图,解:如图,四边形四边形BDEF是平行四边形,是平行四边形,BFDE.D、E分别是分别是BC、GC的中点,的中点,BFDE BG.AEGAEC,AGAC5,BF BG (ABAG).12121232G第1题图