1、第四章基本平面图形考点1直线、线段、射线之间的联系与区别1. 下列说法中正确的语句共有()直线AB与直线BA是同一条直线;直线总比线段长;射线AB与射线BA表示同一条射线;连接两点的线段叫两点间的距离.A.1个 B.2个 C.3个D.4个2. 如图,下列说法不正确的是()第2题图A.直线m,n相交于点PB.射线BP也可叫做射线BAC.PAPBQAQB D.直线m上共有三个点3. 如图,从甲地到乙地有两条路线,从乙地到丙地有三条路线,那么从甲地到丙地的路线条数是.第3题图考点2线段中点及n等分点的有关计算4. 如图,点M是AB的中点,点N是BD的中点,AB12 cm,BC20 cm,CD16 c
2、m,则MN的长为()A.24 cm B.22 cm C.26 cmD.20 cm考点3线段有关的动点及最值问题5. 有下列三个生活、生产现象:植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;从A地到B地架设电线,总是尽可能沿着线段AB架设;把弯曲的公路改直,就能缩短路程.其中,可用基本事实“两点之间的所有连线中,线段最短”来解释的现象有()A. B. C. D.6. 如图是由四个正方体拼接而成的图形,一只蚂蚁沿着正方体的棱爬行,从点A经过点B最终到达点C的最短路线有种.考点4比较线段的长短7. 已知:射线AB,如图.(1)请用无刻度的直尺和圆规作图:延长线段AB到点C,使BC3AB;
3、(要求:不写作法,保留作图痕迹,使用2B铅笔作图)(2)若点D是线段BC的中点,且CD3,求线段AC的长度是多少.(要求:写出推理过程)考点5多边形的认识及相关计算8. 如图,网格图中每个小正方形的边长均为1,以OA为半径的扇形AOB经过平移到达扇形AOB的位置,那么图中阴影部分的面积是()A.6 B.6.5 C.7 D.5.89. 下列图形中的角是圆心角的是()A B C D考点6与角有关的计算10. 钟表上显示8时45分时,时针与分针所夹的角度是()A.30 B.22.5 C.15 D.7.5 11.将两块直角三角尺的直角顶点重合为如图的位置,若AOC25,则BOD()A.15 B.25
4、C.65 D.7512.如图,OB,OM,ON分别是AOC,AOB,BOC内部的一条射线.(1)如图1,若AOB36,BOC110,OM,ON分别是AOB,BOC的平分线,求MON的度数;(2)如图2,若OB平分AOC,且CON2AOM,BOMAOC25,则BOM和BON之间存在怎样的数量关系?请说明理由.【课后作业】一、选择题1.下列说法正确的个数是()(1)连接两点之间的线段叫两点间的距离; (2)两点之间,线段最短;(3)若AB2CB,则点C是AB的中点; (4)角的大小与角的两边的长短无关.A.1个B.2个C.3个 D.4个2. 花店在银行的北偏西30方向200 m处,那么银行在花店的
5、方向200 m处.()A.东偏南30B.南偏东30 C.西偏北30 D.北偏西303. 如图,已知ab,直角三角板的直角顶点在直线a上,若136,则2等于()第3题图A.36B.54C.64 D.724. 如图,线段AB18 cm,点C在线段AB上,点P,Q是线段AC的三等分点,点M,N是线段BC的三等分点,则线段PN的长为()第4题图A.6 cmB.9 cmC.12 cmD.15 cm5. 如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且ABBCCD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警
6、报的点P最多有()A.3个 B.4个C.5个 D.6个二、填空题6. 如图,A,B,C是直线l上的三个点.(1)图中共有条线段;(2)图中以点B为端点的射线有条,分别是;(3)直线l还可以表示为.7. 如图,点O在直线CD上,若AOB90,OE平分AOD,BOC2AOC,那么AOE的度数是.8. 在直线l上取A,B,C三点,使得AB4 cm, BC5 cm.如果点O是线段AC的中点,则线段OB的长度为cm.三、解答题9.如图,平面上有四个点A,B,C,D.根据下列语句画图.(1)画直线AB,CD相交于点E;(2)画线段AC,BD相交于点F;(3)画射线BC;(4)连接AD并将其反向延长.10.
7、如图1所示,将两块直角三角尺的直角顶点C叠放在一起.(1)若DCE25,则ACB;若ACB130,则DCE;(2)如图2所示,若两个同样的三角板,将60锐角的顶点A叠放在一起,则DAB与CAE有何数量关系,请说明理由;(3)如图3所示,已知AOB,COD(,都是锐角).若把它们的顶点O叠放在一起,将AOD与BOC的数量关系用含与的式子表示出来,直接写出结论.第四章基本平面图形考点1直线、线段、射线之间的联系与区别1. 下列说法中正确的语句共有(A)直线AB与直线BA是同一条直线;直线总比线段长;射线AB与射线BA表示同一条射线;连接两点的线段叫两点间的距离.A.1个 B.2个 C.3个D.4个
8、2. 如图,下列说法不正确的是(D)第2题图A.直线m,n相交于点PB.射线BP也可叫做射线BAC.PAPBQAQB D.直线m上共有三个点3. 如图,从甲地到乙地有两条路线,从乙地到丙地有三条路线,那么从甲地到丙地的路线条数是6.第3题图考点2线段中点及n等分点的有关计算4. 如图,点M是AB的中点,点N是BD的中点,AB12 cm,BC20 cm,CD16 cm,则MN的长为(A)A.24 cm B.22 cm C.26 cmD.20 cm考点3线段有关的动点及最值问题5. 有下列三个生活、生产现象:植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;从A地到B地架设电线,总是尽可能
9、沿着线段AB架设;把弯曲的公路改直,就能缩短路程.其中,可用基本事实“两点之间的所有连线中,线段最短”来解释的现象有(C)A. B. C. D.6. 如图是由四个正方体拼接而成的图形,一只蚂蚁沿着正方体的棱爬行,从点A经过点B最终到达点C的最短路线有9种.考点4比较线段的长短7. 已知:射线AB,如图.(1)请用无刻度的直尺和圆规作图:延长线段AB到点C,使BC3AB;(要求:不写作法,保留作图痕迹,使用2B铅笔作图)解:(1)如图,线段BC即为所求作的线段;(2)若点D是线段BC的中点,且CD3,求线段AC的长度是多少.(要求:写出推理过程)解:(2)如图,点D是线段BC的中点,且CD3,B
10、C2CD6.BC3AB,AB2,ACABBC268.考点5多边形的认识及相关计算8. 如图,网格图中每个小正方形的边长均为1,以OA为半径的扇形AOB经过平移到达扇形AOB的位置,那么图中阴影部分的面积是(A)A.6 B.6.5 C.7 D.5.89. 下列图形中的角是圆心角的是(B)AB C D考点6与角有关的计算10. 钟表上显示8时45分时,时针与分针所夹的角度是(D)A.30 B.22.5 C.15 D.7.5 11.将两块直角三角尺的直角顶点重合为如图的位置,若AOC25,则BOD(B)A.15 B.25 C.65 D.7512.如图,OB,OM,ON分别是AOC,AOB,BOC内部
11、的一条射线.(1)如图1,若AOB36,BOC110,OM,ON分别是AOB,BOC的平分线,求MON的度数;解:(1)AOB36,BOC110,OM,ON分别是AOB,BOC的平分线,BOMAOB18,BONBOC55,MONBOMBON185573.(2)如图2,若OB平分AOC,且CON2AOM,BOMAOC25,则BOM和BON之间存在怎样的数量关系?请说明理由.解:(2)BOMBON43,理由如下,CON2AOM,设AOM,则CON2,设BOMx,OB平分AOC,xBON2,BONx.BOMAOC25,x(xx2)25,x4,则BON3,BOMBON43.【课后作业】一、选择题1.下
12、列说法正确的个数是(B)(1)连接两点之间的线段叫两点间的距离; (2)两点之间,线段最短;(3)若AB2CB,则点C是AB的中点; (4)角的大小与角的两边的长短无关.A.1个B.2个C.3个 D.4个2. 花店在银行的北偏西30方向200 m处,那么银行在花店的方向200 m处.(B)A.东偏南30B.南偏东30 C.西偏北30 D.北偏西303. 如图,已知ab,直角三角板的直角顶点在直线a上,若136,则2等于(B)第3题图A.36B.54C.64 D.724. 如图,线段AB18 cm,点C在线段AB上,点P,Q是线段AC的三等分点,点M,N是线段BC的三等分点,则线段PN的长为(C
13、)第4题图A.6 cmB.9 cmC.12 cmD.15 cm5. 如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且ABBCCD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P最多有(C)A.3个 B.4个C.5个 D.6个二、填空题6. 如图,A,B,C是直线l上的三个点.(1)图中共有3条线段;(2)图中以点B为端点的射线有2条,分别是射线BC、射线BA;(3)直线l还可以表示为直线AB或直线AC或直线BC或直线BA或直线CA或直线CB.7. 如图,点O在直线CD上,若AOB90,OE平
14、分AOD,BOC2AOC,那么AOE的度数是75. 解析:AOB90,BOC2AOC,AOC30,AOD150.OE平分AOD,AOE75.故答案为75.8. 在直线l上取A,B,C三点,使得AB4 cm, BC5 cm.如果点O是线段AC的中点,则线段OB的长度为0.5或4.5cm.解析:如图1所示,AB4 cm,BC5 cm,ACABBC9 cm.点O是线段AC的中点,OAOCAC4.5 cm,OBOAAB0.5 cm.如图2所示,AB4 cm,BC5 cm,ACBCAB1 cm.点O是线段AC的中点,OAOCAC0.5 cm,OBOAAB4.5 cm.综上所述,OB0.5 cm或OB4.
15、5 cm,故答案为0.5或4.5.三、解答题9.如图,平面上有四个点A,B,C,D.根据下列语句画图.(1)画直线AB,CD相交于点E;(2)画线段AC,BD相交于点F;(3)画射线BC;(4)连接AD并将其反向延长.解:如图.10.如图1所示,将两块直角三角尺的直角顶点C叠放在一起.(1)若DCE25,则ACB155;若ACB130,则DCE50;解:(1)当DCE25时,BCE90,BCDBCEDCE65.ACD90 ,ACBACDBCD9065155,故答案为155;当ACB130时,ACD90 ,BCDACBACD1309040,BCE90,DCEBCEBCD904050,故答案为50.(2)如图2所示,若两个同样的三角板,将60锐角的顶点A叠放在一起,则DAB与CAE有何数量关系,请说明理由;解:(2)DABCAE120,理由如下:CADBAE60,DAECADCAE60CAE,DABDAEBAE120CAE,DABCAE120.(3)如图3所示,已知AOB,COD(,都是锐角).若把它们的顶点O叠放在一起,将AOD与BOC的数量关系用含与的式子表示出来,直接写出结论.解:(3)AODBOC,理由如下,AODAOCCOBBOD(COB)BOC(BOC)BOC,AODBOC,故答案为AODBOC.