1、 1 数学八年级上册期中检测题数学八年级上册期中检测题(HK) (考试时间:120 分钟 满分:150 分) 分数:_ 一、选择题(本大题共 10 小题,每小题 4 分,满分 40 分) 每小题都给出 A、B、C、D 四个选项,其中只有一个是正确的 1点 P(2,5)所在的象限是( B ) A一 B二 C三 D四 2(长丰县期末)在函数 y 2 x2中,自变量 x 的取值范围是( A ) Ax2 Bx2 Cx2 Dx2 3下列命题是真命题的是( C ) A直角三角形中两个锐角互补 B相等的角是对顶角 C同旁内角互补,两直线平行 D若|a|b|,则 ab 4已知 P(0,4),Q(6,1),将线
2、段 PQ 平移至 P1Q1,若 P1(m,3),Q1(3,n),则 mn的值是( D ) A8 B8 C9 D9 5若一个三角形的三条边长分别为 3,2a1,6,则整数 a 的值可能是( B ) A2,3 B3,4 C2,3,4 D3,4,5 6已知点 A(2,y1),B(3,y2),C(3,y3)都在关于 x 的一次函数 yxm 的图象 上,则 y1,y2,y3之间的大小关系是( D ) Ay1y2y3 By1y2y3 Cy2y1y3 Dy3y1y2 2 7在同一平面直角坐标系中,函数 ykx 与 yx 2k 的图象大致是( B ) A B C D 8如图,BP,CP 是ABC 的外角角平分
3、线,若P60 ,则A 的大小为( B ) A30 B60 C90 D120 第 8 题图 第 10 题图 9设 minx,y表示 x,y 两个数中的最小值,例如 min0,20,min12,88, 则关于 x 的函数 ymin2x,x2可以表示为( A ) Ay 2x(x2) x2(x2) By x2(x2) 2x(x2) Cy2x Dyx2 10在如图的方格纸中,每个小方格都是边长为 1 的正方形,点 A,B 是方格中的两 个格点(即网格中横、 纵线的交点), 在这个 55 的方格纸中, 格点 C 使ABC 的面积为 2, 则图中这样的格点 C 有( C ) A3 个 B4 个 C5 个 D
4、6 个 二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分) 11写出命题“互为倒数的两个数乘积为 1”的逆命题:_如果两个数的乘积为 1,那 么这两个数互为倒数 12已知点(3,5)在直线 yaxb(a,b 为常数,且 a0)上,则b5 a 3 . 3 13如图,直线 y1k1xb 和直线 y2k2xb 交于 y 轴上一点,则不等式 k1xbk2x b 的解集为 x0 . 14如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“”方向排列, 如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),根据这个规律探究可得,第 110 个点的坐标为_(15,10)
5、_ 选择、填空题答题卡 一、选择题(每小题 4 分,共 40 分) 题号 1 2 3 4 5 得分 答案 B A C D B 题号 6 7 8 9 10 答案 D B B A C 二、填空题(每小题 5 分,共 20 分)得分:_ 11_如果两个数的乘积为 1,那么这两个数互为倒数_ 12 3 13. x0 14._(15,10)_ 三、(本大题共 2 小题,每小题 8 分,满分 16 分) 15判断下列各图中,AD 是不是ABC 中 BC 边上的高?如果不是,请你画出ABC 中 BC 边上的高 4 解:AD 不是ABC 中 BC 边上的高, 如图所示,AE 即为ABC 中 BC 边上的高 1
6、6已知 y2 与 x1 成正比例函数关系,且 x3 时,y4. (1)求 y 与 x 之间的函数表达式; (2)求当 x2 时,y 的值 解:(1)设 y2k(x1)(k0), 当 x3,y4 时,42k(31),解得 k3, y23(x1), 即 y3x5. (2)当 x2 时,y3(2)511. 四、(本大题共 2 小题,每小题 8 分,满分 16 分) 17已知点 A(m2,3)和点 B(m1,2m4),且 ABx 轴 (1)求 m 的值; (2)求 AB 的长 解:(1)A(m2,3)和点 B(m1,2m4),且 ABx 轴, 2m43, m7 2. (2)由(1)得 m7 2, 5
7、m211 2 ,m15 2,2m43, A 11 2 ,3 ,B 5 2,3 . 11 2 5 23, AB 的长为 3. 18如图,在ABC 中,BAC90 ,B50 ,AE,CF 是角平分线,它们相交于 点 O,AD 是高,求BAD 和AOC 的度数 解:AD 是高, B50 , RtABD 中,BAD90 50 40 . BAC90 ,B50 , ABC 中,ACB90 50 40 . AE,CF 是角平分线, CAE1 2 CAB45 , ACF1 2 ACB20 , AOC 中,AOC180 45 20 115 . 五、(本大题共 2 小题,每小题 10 分,满分 20 分) 19已
8、知ABC 在平面直角坐标系中的位置如图所示将ABC 向右平移 6 个单位, 6 再向下平移 6 个单位得到A1B1C1.(图中每个小方格边长均为 1 个单位) (1)在图中画出平移后的A1B1C1; (2)直接写出A1B1C1各顶点的坐标:A1_;B1_;C1_; (3)求出ABC 的面积 解:(1)如图,A1B1C1即为所求 (2)由图可知,A1(4,2);B1(1,4);C1(2,1) 故答案为:(4,2);(1,4);(2,1) (3)SABC331 2 131 2 121 2 237 2. 20已知:如图,AC,BD 相交于点 O,DF 平分CDO 交 AC 于点 F,BE 平分ABO
9、 交 AC 于点 E,AC.记CDF1,OBE2.求证:12. 证明:AC, DCAB, CDOABO. DF 平分CDO,BE 平分ABO, 7 11 2 CDO, 21 2 ABO, 12. 六、(本题满分 12 分) 21(东至县期末)如图,直线 ykx1(k0)与 y 轴,x 轴分别交于点 A,B.直线 y 2x4 与 y 轴交于点 C,与直线 ykx1 交于点 D.ACD 的面积为3 2. (1)求 k 的值; (2)直接写出不等式 x12x4 的解集; (3)点 P 在 x 轴上,如果DBP 的面积为 4,求点 P 的坐标 解:(1)当 x0 时,ykx11,则 A(0,1), 当
10、 x0 时,y2x44,则 C(0,4) 设 D 点的坐标为(t,2t4), ACD 的面积为3 2, 1 2 (41)t3 2,解得 t1, D(1,2), 把 D(1,2)代入 ykx1 得 k12, k1. (2)不等式 x12x4 的解集为 x1. 8 (3)当 y0 时,x10, 解得 x1,则 B(1,0), 设 P(m,0), DBP 的面积为 4, 1 2 |m1|24,解得 m3 或5, P 点坐标为(5,0)或(3,0) 9 七、(本题满分 12 分) 22甲、乙两人在一条笔直的公路上同向匀速而行,甲从 A 点开始追赶乙,甲、乙两 人之间的距离 y(m)与追赶的时间 x(s
11、)的关系如图所示已知乙的速度为 5 m/s. (1)求甲、乙两人之间的距离 y(m)与追赶的时间 x(s)之间的函数关系式; (2)甲从 A 点追赶乙,经过 40 s,求甲前行的距离; (3)若甲追赶 10 s 后,甲的速度增加 1.2 m/s,请求出 10 秒后甲、乙两人之间的距离 y(m) 与追赶的时间 x(s)之间的函数关系式,并在图中画出它的图象 解:(1)设 ykxb(k0), 函数图象经过点(0,90),(50,0), b90, 50kb0,解得 k9 5, b90. y9 5x90. (2)54090 9 5 4090 20090(7290) 272. 答:甲前行的距离为 272
12、 m. (3)甲的速度为 272 406.8 m/s, 甲的速度增加后为 6.81.28 m/s, x10 时,y9 5 109072 m, 由题意得,相遇时,5(x10)728(x10), 解得 x34, 10 10 x34 时,y5(x10)728(x10)3x102, x34 时,y8(x34)5(x34)3x102, 画出函数图象如图所示 八、(本题满分 14 分) 23(肥东县期末)为加强校园文化建设,某校准备打造校园文化墙,需用甲、乙两种石 材经市场调查,甲种石材的费用 y(元)与使用面积 x(m2)间的函数关系如图所示,乙种石材 的价格为每平方米 50 元 (1)求 y 与 x
13、间的函数表达式; (2)若校园文化墙总面积共 600 m2,其中使用甲石材 x m2,设购买两种石材的总费用为 w 元,请直接写出 w 与 x 间的函数表达式; (3)在(2)的前提下,若甲种石材使用面积多于 300 m2,且不超过乙种石材面积的 2 倍, 那么应该怎样分配甲、乙两种石材的面积才能使总费用最少?最少总费用为多少元? 解:(1)y 80 x(0 x300), 30 x15 000(x300). (2)使用甲种石材 x m2,则使用乙种石材(600 x)m2. 当 0 x300 时, w80 x50(600 x)30 x30 000. 当 x300 时, w30 x15 00050(600 x)20 x45 000. w 30 x30 000(0 x300), 20 x45 000(x300). 11 (3)设甲种石材为 x m2,则乙种石材(600 x) m2, x300, x2(600 x), 300 x400, 由(2)知 w20 x45 000, k200, w 随 x 的增大而减小, 即甲种石材 400 m2,乙种石材 200 m2时, wmin2040045 00037 000. 答:甲种石材 400 m2,乙种石材 200 m2时,总费用最少,最少总费用为 37 000 元