1、数数 学学 知知 识识 提提 纲纲 姓名 初二上册初二上册 2 初二初二数学(上册)知识点总结数学(上册)知识点总结 第一章第一章 勾股定理勾股定理 1 1、勾股定理、勾股定理 直角三角形两直角边 a,b 的平方和等于斜边 c 的平方,即 222 cba 2 2、勾股定理的逆定理、勾股定理的逆定理(直角三角形的判定条件)(直角三角形的判定条件) 如果三角形的三边长 a,b,c 有关系 222 cba,那么这个三角形是直角三角形,且最长边所对的角是 直角。 3、勾股数、勾股数:满足 222 cba的三个正整数,称为勾股数。 第二章第二章 实实 数数 一、实数的概念及分类一、实数的概念及分类 1、
2、实数的分类、实数的分类 正有理数 有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数 无理数 无限不循环小数 负无理数 2、无理数、无理数:无限不循环小数叫做无理数。 在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如 3 2,7等; (2)有特定意义的数,如圆周率 ,或化简后含有 的数,如 3 +8 等; (3)有特定结构的数,如 0.1010010001等; (4)某些三角函数值,如 sin60o等 二、实数的倒数、相反数和绝对值二、实数的倒数、相反数和绝对值 1、相反数 实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反
3、数是零) ,从数轴上看,互为 相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数,则有 a+b=0,a=b,反之亦成立。 2、绝对值 在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。 (|a|0) 。零的绝对值是它本身,也可看成它 的相反数,若|a|=a,则 a0;若|a|=-a,则 a0。 3、倒数 如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。倒数等于本身的数是 1 和-1。零没有倒数。 4、数轴 规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可) 。 解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并
4、能灵活运用。 5、估算 三、平方根、算术三、平方根、算术平方根和立方根平方根和立方根 1、算术平方根:一般地,如果一个正数 x 的平方等于 a,即 x2=a,那么这个正数 x 就叫做 a 的算术平方根。 特别地,0 的算术平方根是 0。 表示方法:记作“a” ,读作根号 a。 3 性质:正数和零的算术平方根都只有一个,零的算术平方根是零。 2、平方根:一般地,如果一个数 x 的平方等于 a,即 x2=a,那么这个数 x 就叫做 a 的平方根(或二次方根) 。 表示方法:正数 a 的平方根记做“a” ,读作“正、负根号 a” 。 性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没
5、有平方根。 开平方:求一个数 a 的平方根的运算,叫做开平方。 0a 注意a的双重非负性: a0 3、立方根 一般地,如果一个数 x 的立方等于 a,即 x3=a 那么这个数 x 就叫做 a 的立方根(或三次方根) 。 表示方法:记作 3 a 性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。 注意: 33 aa,这说明三次根号内的负号可以移到根号外面。 四四、实数大小的比较、实数大小的比较 1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比 左边的大;两个负数,绝对值大的反而小。 2、实数大小比较的几种常用方法 (1)数轴
6、比较:在数轴上表示的两个数,右边的数总比左边的数大。 (2)求差比较:设 a、b 是实数, ,0baba ,0baba baba0 (3)求商比较法:设 a、b 是两正实数,;1;1;1ba b a ba b a ba b a (4)绝对值比较法:设 a、b 是两负实数,则baba。 (5)平方法:设 a、b 是两负实数,则baba 22 。 五、五、算术平方根有关计算算术平方根有关计算(二次根式)(二次根式) 1、含有二次根号“” ;被开方数 a 必须是非负数。 2、性质: (1))0()( 2 aaa )0( aa (2) aa2 )0( aa (3))0, 0(babaab ()0, 0
7、(baabba) (4))0, 0(ba b a b a ()0, 0(ba b a b a ) 3、运算结果若含有“a”形式,必须满足: (1)被开方数的因数是整数,因式是整式; (2)被开方数中不 4 含能开得尽方的因数或因式; (3)分母中不能含有根号。 六、实数的运算六、实数的运算 (1)六六种运算:种运算:加、减、乘、除、乘方 、开方 (2)实数的运算顺序 先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。 (3)运算律)运算律 加法交换律:abba 加法结合律:)()(cbacba 乘法交换律:baab 乘法结合律:)()(bcacab 乘法对加法的分配律: ac
8、abcba )( 第三章第三章 位置与坐标位置与坐标 一、在平面内,确定物体的位置一般需要两个数据。一、在平面内,确定物体的位置一般需要两个数据。 二二、平面直角坐标系、平面直角坐标系及有关概念及有关概念 1、平面直角坐标系 在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。 其中,水平的数轴叫做 x 轴或横轴,取向右为正方向;铅直的数轴叫做 y 轴或纵轴,取向上为正方向;x 轴和 y 轴统称坐标轴。它们的公共原点 O 称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 2、为了便于描述坐标平面内点的位置,把坐标平面被 x 轴和 y 轴分割而成的四个部分,分别叫做第一象限
9、、第二 象限、第三象限、第四象限。 注意:x 轴和 y 轴上的点(坐标轴上的点) ,不属于任何一个象限。 3、点的坐标的概念 对于平面内任意一点 P,过点 P 分别 x 轴、y 轴向作垂线,垂足在上 x 轴、y 轴对应的数 a,b 分别叫做点 P 的 横坐标、纵坐标,有序数对(a,b)叫做点 P 的坐标。 点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“, ”分开,横、纵坐标的位置不能 颠倒。平面内点的坐标是有序实数对,当ba 时, (a,b)和(b,a)是两个不同点的坐标。 平面内点的与有序实数对是一一对应的。 4、不同位置的点的坐标的特征 (1) 、各象限内点的坐标的特征
10、 点 P(x,y)在第一象限0, 0yx 点 P(x,y)在第二象限0, 0yx 点 P(x,y)在第三象限0, 0yx 点 P(x,y)在第四象限0, 0yx (2) 、坐标轴上的点的特征 点 P(x,y)在 x 轴上0 y,x 为任意实数 点 P(x,y)在 y 轴上0 x,y 为任意实数 点 P(x,y)既在 x 轴上,又在 y 轴上x,y 同时为零,即点 P 坐标为(0,0)即原点 (3) 、两条坐标轴夹角平分线上点的坐标的特征 点 P(x,y)在第一、三象限夹角平分线(直线 y=x)上x 与 y 相等 点 P(x,y)在第二、四象限夹角平分线上x 与 y 互为相反数 5 (4) 、和
11、坐标轴平行的直线上点的坐标的特征 位于平行于 x 轴的直线上的各点的纵坐标相同。 位于平行于 y 轴的直线上的各点的横坐标相同。 (5) 、关于 x 轴、y 轴或原点对称的点的坐标的特征 点 P 与点 p关于 x 轴对称横坐标相等,纵坐标互为相反数,即点 P(x,y)关于 x 轴的对称点为 P(x,-y) 点 P 与点 p关于 y 轴对称纵坐标相等,横坐标互为相反数,即点 P(x,y)关于 y 轴的对称点为 P(-x,y) 点 P 与点 p关于原点对称横、纵坐标均互为相反数,即点 P(x,y)关于原点的对称点为 P(-x,-y) (6)、点到坐标轴及原点的距离 点 P(x,y)到坐标轴及原点的
12、距离: (1)点 P(x,y)到 x 轴的距离等于y (2)点 P(x,y)到 y 轴的距离等于x (3)点 P(x,y)到原点的距离等于 22 yx 三、坐标变化与图形变化的规律:三、坐标变化与图形变化的规律: 坐标( x , y )的变化 图形的变化 x a 或 y a 被横向或纵向拉长(压缩)为原来的 a 倍 x a, y a 放大(缩小)为原来的 a 倍 x ( -1)或 y ( -1) 关于 y 轴或 x 轴对称 x ( -1), y ( -1) 关于原点成中心对称 x +a 或 y+ a 沿 x 轴或 y 轴平移 a 个单位 x +a, y+ a 沿 x 轴平移 a 个单位,再沿
13、y 轴平移 a 个单 第四章第四章 一次函数一次函数 一、函数:一、函数: 一般地,在某一变化过程中有两个变量 x 与 y,如果给定一个 x 值,相应地就确定了一个 y 值,那么我们称 y 是 x 的函数,其中 x 是自变量,y 是因变量。 二、自变量取值范围二、自变量取值范围 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数) ,分式(分母不为 0) 、二次根式(被开方数为非负数) 、实际意义几方面考虑。 三、函数的三种表示法及其优缺点三、函数的三种表示法及其优缺点 (1)关系式(解析)法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表
14、示,这种表示法叫做关系式 (解析)法。 (2)列表法 把自变量 x 的一系列值和函数 y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图象法 用图象表示函数关系的方法叫做图象法。 四、由函数关系式画其图像的一般步骤四、由函数关系式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 五、正比例函数和一次函数五、正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,若两个变量 x,y 间的关系可以表示成bkxy(k,b 为常
15、数,k0)的形式,则称 y 是 x 的一 6 次函数(x 为自变量,y 为因变量) 。 特别地,当一次函数bkxy中的 b=0 时(即kxy ) (k 为常数,k0) ,称 y 是 x 的正比例函数。 2、一次函数的图像: 所有一次函数的图像都是一条直线 3、一次函数、正比例函数图像的主要特征: 一次函数bkxy的图像是经过点(0,b)的直线;正比例函数kxy 的图像是经过原点(0,0)的直线。 k 的符号 b 的符号 函数图像 图像特征 k0 b0 y 0 x 图像经过一、二、三象限,y 随 x 的增大而增大。 b0 y 0 x 图像经过一、三、四象限,y 随 x 的增大而增大。 K0 y
16、0 x 图像经过一、二、四象限,y 随 x 的增大而减小 b0 时,图像经过第一、三象限,y 随 x 的增大而增大; (2)当 k0 时,y 随 x 的增大而增大 (2)当 k0 时,y 随 x 的增大而减小 6、正比例函数和一次函数解析式的确定 确定一个正比例函数,就是要确定正比例函数定义式kxy (k0)中的常数 k。确定一个一次函数,需要确 定一次函数定义式bkxy(k0)中的常数 k 和 b。解这类问题的一般方法是待定系数法。 7、一次函数与一元一次方程的关系: 任何一个一元一次方程都可转化为:kx+b=0(k、b 为常数,k0)的形式 而一次函数解析式形式正是 y=kx+b(k、b
17、为常数,k0) 当函数值为 0 时,即 kx+b=0 就与一元一次方程完全相同 结论:由于任何一元一次方程都可转化为 kx+b=0(k、b 为常数,k0)的形式所以解一元一次方程可以转 化为:当一次函数值为 0 时,求相应的自变量的值 从图象上看,这相当于已知直线 y=kx+b 确定它与 x 轴交点的横坐标值 第五章第五章 二元一次方程组二元一次方程组 1、二元一次方程 含有两个未知数,并且所含未知数的项的次数都是 1 的整式方程叫做二元一次方程。 2、二元一次方程的解 适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。 3、二元一次方程组 含有两个未知数的两个一次方程所组成
18、的一组方程,叫做二元一次方程组。 4 二元一次方程组的解 二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。 5、二元一次方程组的解法 (1)代入(消元)法(2)加减(消元)法 6、一次函数与二元一次方程(组)的关系: (1)一次函数与二元一次方程的关系: 直线 y=kx+b 上任意一点的坐标都是它所对应的二元一次方程 kx- y+b=0 的解 (2)一次函数与二元一次方程组的关系: 二元一次方程组 的解可看作两个一次函数 和 的图象的交点。 当函数图象有交点时,说明相应的二元一次方程组有解;当函数图象(直线)平行即无交点时,说明相应的二 元一次方程组无解。 第六章第六章 数据的数
19、据的分析分析 1、刻画数据的集中趋势(平均水平)的量:、刻画数据的集中趋势(平均水平)的量:平均数 、众数、中位数 2、平均数、平均数(1)平均数:一般地,对于 n 个数, 21n xxx我们把)( 1 21n xxx n 叫做这 n 个数的算术 平均数,简称平均数,记为x。 (2)加权平均数: 3、众数、众数 一组数据中出现次数最多的那个数据叫做这组数据的众数。 222 111 cybxa cybxa 1 1 1 1 1 b c x b a y 2 2 1 2 2 b c x b a y 8 4、中位数、中位数 一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平
20、均数)叫做这组 数据的中位数。 新新章节:章节: 图形的平移与旋转图形的平移与旋转 一、平移一、平移 1、定义:在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。 2、性质:平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。 二二、旋转、旋转 1、定义 在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中 心,转动的角叫做旋转角。 2、性质 旋转前后两个图形是全等图形, 对应点到旋转中心的距离相等, 对应点与旋转中心的连线所成的角等于旋转角。 四边形性质探索四边形性质探索 一、四边形的相关概念一、
21、四边形的相关概念 1、四边形:在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。 2、四边形具有不稳定性 3、四边形的内角和定理及外角和定理 四边形的内角和定理:四边形的内角和等于 360。 四边形的外角和定理:四边形的外角和等于 360。 推论:多边形的内角和定理:n 边形的内角和等于 )2(n180; 多边形的外角和定理:任意多边形的外角和等于 360。 6、设多边形的边数为 n,则多边形的对角线共有 2 )3( nn 条。从 n 边形的一个顶点出发能引(n-3)条对角线, 将 n 边形分成(n-2)个三角形。 二、平行四边形二、平行四边形 1、平行四边形的定义:两
22、组对边分别平行的四边形叫做平行四边形。 2、平行四边形的性质 (1)平行四边形的对边平行且相等。 (2)平行四边形相邻的角互补,对角相等 (3)平行四边形的对角线互相平分。 (4)平行四边形是中心对称图形,对称中心是对角线的交点。 常用点: (1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交 点,并且这条直线二等分此平行四边形的面积。 (2)推论:夹在两条平行线间的平行线段相等。 3、平行四边形的判定 (1)定义:两组对边分别平行的四边形是平行四边形 (2)定理 1:两组对角分别相等的四边形是平行四边形 (3)定理 2:两组对边分别相等的四边形是平行四边
23、形 (4)定理 3:对角线互相平分的四边形是平行四边形 (5)定理 4:一组对边平行且相等的四边形是平行四边形 4、两条平行线的距离 两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。 平行线间的距离处处相等。 5、平行四边形的面积 S平行四边形=底边长高=ah 9 三、矩形三、矩形 1、矩形的定义:有一个角是直角的平行四边形叫做矩形。 2、矩形的性质 (1)矩形的对边平行且相等 (2)矩形的四个角都是直角 (3)矩形的对角线相等且互相平分 (4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相 等) ;对称轴有两条,是对边
24、中点连线所在的直线。 3、矩形的判定 (1)定义:有一个角是直角的平行四边形是矩形 (2)定理 1:有三个角是直角的四边形是矩形 (3)定理 2:对角线相等的平行四边形是矩形 4、矩形的面积:S矩形=长宽=ab 四、菱形四、菱形 1、菱形的定义:有一组邻边相等的平行四边形叫做菱形 2、菱形的性质 (1)菱形的四条边相等,对边平行 (2)菱形的相邻的角互补,对角相等 (3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角 (4) 菱形既是中心对称图形又是轴对称图形; 对称中心是对角线的交点 (对称中心到菱形四条边的距离相等) ; 对称轴有两条,是对角线所在的直线。 3、菱形的判定 (1)定
25、义:有一组邻边相等的平行四边形是菱形 (2)定理 1:四边都相等的四边形是菱形 (3)定理 2:对角线互相垂直的平行四边形是菱形 4、菱形的面积:S菱形=底边长高=两条对角线乘积的一半 五、正方形五、正方形 (310310 分)分) 1、正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。 2、正方形的性质 (1)正方形四条边都相等,对边平行 (2)正方形的四个角都是直角 (3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角 (4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的 直线和对边中点连线所在的直线。 3
26、、正方形的判定 判定一个四边形是正方形的主要依据是定义,途径有两种: 先证它是矩形,再证它是菱形。 先证它是菱形,再证它是矩形。 4、正方形的面积:设正方形边长为 a,对角线长为 b,则 S正方形= 2 2 2 b a 。 六、梯形六、梯形 (一) 1、梯形的相关概念 一组对边平行而另一组对边不平行的四边形叫做梯形。 梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。 梯形中不平行的两边叫做梯形的腰。 梯形的两底的距离叫做梯形的高。 2、梯形的判定 10 (1)定义:一组对边平行而另一组对边不平行的四边形是梯形。 (2)一组对边平行且不相等的四边形是梯形。 (二)直角梯形
27、的定义:一腰垂直于底的梯形叫做直角梯形。 一般地,梯形的分类如下: 一般梯形 梯形 直角梯形 特殊梯形 等腰梯形 (三)等腰梯形 1、 等腰梯形的定义: 两腰相等的梯形叫做等腰梯形。 2、等腰梯形的性质 (1)等腰梯形的两腰相等,两底平行。 (2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。 (3)等腰梯形的对角线相等。 (4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。 3、等腰梯形的判定 (1)定义:两腰相等的梯形是等腰梯形 (2)定理:在同一底上的两个角相等的梯形是等腰梯形 (3)对角线相等的梯形是等腰梯形。 (选择题和填空题可直接用) (四)梯形的面积 (1)如
28、图,DEABCDS ABCD )( 2 1 梯形 (2)梯形中有关图形的面积: BACABD SS ; BOCAOD SS ; BCDADC SS 七、有关中点四边形问题的知识点:七、有关中点四边形问题的知识点: (1)顺次连接任意四边形的四边中点所得的四边形是平行四边形; (2)顺次连接矩形的四边中点所得的四边形是菱形; (3)顺次连接菱形的四边中点所得的四边形是矩形; (4)顺次连接等腰梯形的四边中点所得的四边形是菱形; (5)顺次连接对角线相等的四边形四边中点所得的四边形是菱形; (6)顺次连接对角线互相垂直的四边形四边中点所得的四边形是矩形; (7)顺次连接对角线互相垂直且相等的四边形
29、四边中点所得的四边形是正方形; 八、八、中心对称中心对称图形图形 1、定义 在平面内,一个图形绕某个点旋转 180,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形, 这个点叫做它的对称中心。 2、性质 (1)关于中心对称的两个图形是全等形。 (2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。 (3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。 3、判定:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。 九九、四边形、矩形、菱形、正方形、梯形、等腰梯形、直角梯形的关系图:四边形、矩形、菱形、正方形、梯形、等腰梯形、直角梯形的关系图: (图(图 4 4109109)