1、39.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行. 40证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行. 41.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直. 42证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直; (3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 43证明直线与平面垂
2、直的思考途径 (1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面。 44证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直; 45、柱体、椎体、球体的侧面积、表面积、体积计算公式 圆柱侧面积=rl2,表面积= 2 22rrl 圆椎侧面积=rl,表面积= 2 rrl 1 3 VSh 柱体 (S是柱体的底面积、h是柱体的高). 1 3 VSh 锥体 (S是锥体的底面积、h是锥体的高). 球的半径是R,则其体积 3 4 3 VR,其表面积 2 4SR 46、若点 A 111 ( ,)x y z,点 B 222 (,)xyz,则 ,A B d=|ABAB AB 222 212121 ()()()xxyyzz 47、点到平面距离的计算(定义法、等体积法) 48、直棱柱、正棱柱、长方体、正方体的性质:侧棱平行且相等,与底面垂直。 正棱锥的性质:侧棱相等,顶点在底面的射影是底面正多边形的中心。