1、误差理论与测量平差基础习题集参考答案第一章1.1.04:真误差的定义LL 1.2.06:第四章后布置第二章2.1.03:222222)()()()()( 2)()()()( 2)()()()()(CXEXDCXEXEXECXEXDCXEXEXCXEXEXECXEXEXECXE0)(2CXE)()(2XDCXE当)(XEC 时min)()(2XDCXE2.1.04:22432321XXS3331832143)(203202xdxxSE535132321163)(2052042xdxxSE1549353)()()(22SESESD2.1.05:)366(416924442)21(616946169
2、461694)()(6)(9)()(6)(9)(69)3()(222222222222222aaaaaaaaaaYEYXEXaEYEYEXEXEaXYaEYEXEaaXYYXaEYaXEWEYXYXXYXY令0)62(4)(adaWdE得3a,108)36189(4)(WE。2.2.09:)()(2)()1 (21exp121),(22222112112221yyxxyxf5 . 0, 2, 3, 2, 021221令TXXX21Txxx21)()()(21exp| )(|21)(121XExXDXExXDxfT3232121124333)(XD33349133343121)(1XD9| )(
3、|XD2.3.13:1)绘直方图的目的:观察误差的分布;2)注意事项:适当分组。2.6.24:不确定度:广义、狭义之分。测量不确定度狭义。2.7.28:(1)XYS ,)(2YXC250)()(mXYESE,mYEXECE30)(2)(2)(,dYdXdC22,dYdXxdYYdXdS105)(125)(30)(30)(8)(102)(521001)(10)(52222222222cmmcmmcmmcmmmmmcmSSCCSC228cmC,42220125. 0125mcmmS,(2)9487. 01031010301258302cmmcmcmm。2.7.29:当n时,平均误差与中误差有严格的
4、数学关系,但当n为限值时,中误差受大误差影响更大(对大误差更敏感) ,使用中误差比使用平均误差更严格。第三章3.1.04:213021LLyx1812121132016043320120033021222xyxyx3.1.05:213021LLyx185 .135 .1313320165 . 15 . 44320125 . 05 . 033021222xyxyx3.1.06:018021aLL01802211avLvL018021aLL021wvv15021LLw221wvv,iiivLL015018030180212121LLLLaLL150111502121LLLLw,752121)150
5、(21212111LLLLLL,752121212LLL757511112121LLL211100111wwD,00021111001111121wLD3.1.07:(1)32132121121)(21LLLLLLX2222223642110000002112121XXD,23X(2)321LLLX ,32121313223323212311321dLdLdLLLLLLLLdLLLLdLLLdLLLdX)(000000122212321232243221313222221313243LLLLLLLLLLLLLLLLLLLLDXX23222321222123LLLLLLLX3.1.08:令YXW
6、,05210221LLW,2222252242012002102YYXXYXWWD523115232121LLYXLLYXt222213117611522411t,222213230023t,13t21LLZ ,2112dLLdLLdZ,2212222LLZ,2221LLZ3.1.09:(1)212LLX,222124X(2)212121LLLY,21121211211)(dLLdLLLdLLdLLdLLdY2221212212)(LLLY(3))sin(sin211LLLZ,21212112211211212111212121211111211212122111212211212221121
7、212111211)cot()cot(cot)cot()cot(cot)(cot(cot)()sin()cos()sin(sinsincos)sin(sin)()(sin)cos(sin)(sin)sin(cos)(sin)cos(sin)(sin)cos(sin)sin(cosdLdLLLLLLZdLLLdLLLLZdLdLLLdLLZdLdLLLLLLLLdLLLLLLdLdLLLLLLdLLLLLLLLdLLLLLLdLLLLdLLLLdZ)(sin)cos(sin)(sinsin)(sin)cos(sin)(sin)sin()(sin)cos(sin)(sin)cos(sin)sin(
8、cos2122211121222122211121212121222111212211211LLdLLLLdLLLLLLdLLLLdLLLLLLLLdLLLLdLLLLLLLLLdZ)(sin)(cossinsin)(sin)(cossin)(sinsin21422212122122222142121221214222LLLLLLLLLLLLLLZ3.1.12:ALX ,BXY LLLLXLADIADDLLALXLLLLYLBADIBADDLLBALYTTLLTXXTXXXYBAADBDBIDDBXYXX3.1.13:32112211210dLdLdLLLdLLdLLd,3213121022d
9、LdLdLdLdLd100221114010310201212212211LLLLDDDD212212124340031LLLLLLD,18122113122D12127102211140103021LLLLD3.1.14:000321000000CBALLLCBAZYXW3.1.15:cosSX ,sinSY dSdSXdsincos,dSdSYdcossin2222222sincosSSX,2222222coscosSSY3.1.16:311sinsinLLSYAB,22LYAB)cot(cot331111dLLdLLYdY22dLdY)cot(cot321222121LLYY,2221Y
10、,0010cot0cot31121LLYYY(纵向误差、横向误差相互独立)1dY为 AC 边的纵向误差,2dYSAC为横向误差。所以1dY,与2dY独立。3.1.17:sinsinbc ,)cot(cotsinsinsinsinddbdbdc)cot(cot)()(2222222cbcbccmb6,1,2,各观测误差独立,取8 .34373.1.18:Abcssin21,AdAbcAdcbAdbcdscos21sin21sin21)cossinsin(41222222222222AcbsAcbAbAc各观测误差独立3.1.19:)cos(0SXXAP,)sin(0SYYAPdSdSdXdXAP
11、)sin()cos(00dSdSdYdYAP)cos()sin(00ddSSSdYdXdYdXAAPP)cos()sin()sin()cos(0000A为已知点,所以ddSSSdYdXPP)cos()sin()sin()cos(0000,2200S3.1.20:第五章以后布置3.2.24:BAHhhhHW321(1))(21212121)(126126321321222BABAHHhhhHhhhHhWhh,3)462(41)(412223222122hmmmmh73. 1)(32(2)11hHHAP,11hHP)(61616165)(122122321321111BABAHHhhhHhhhHh
12、Whh,35)4650(361)25(3612223222121hmmmmh29. 1)(351。3.2.25:2522NNN。3.2.26:1hHHAC,2hHHBC,)(21CCCHHH,10025244222SSSCH,8S,该路线最长可达 16km。3.2.27:cosSXXAP,sinSYYAPdSdSdXdXAPsincosdSdSdYdYAPcossinddSSSdYdXPPcossinsincos,25. 60090022S,222YXP。3.2.28:设一测回测角中误差为,84. 0,42. 02,9,28. 084. 0NNN再增加 5 测回。3.2.29:)(2bahS,
13、dhbadbhdahdS222,)(412222222hbaSbahh3.2.30:sinsin,sinsinbaba,)(33)cot(cotsinsinddadbddadbda2222232aaa,3.3.39:1hHHAC,2hHHBC,401CCHHpp)(21CCCHHH,)4040(411CHp,201CHp3.3.40:21220BBP,3221220B,66.524320,41220AAP,2024A,31.112820A3.3.41:一次测角中误差为4 .2(1)242204P,2220,1222NPN,2N(2)2220,07 . 12,(3)6222NPN,12N。3.3
14、.43:与 3.3.41 类似。3.3.44:设每 100m 丈量误差为。232201P,22032,59222S,27105932222P3.3.45:ADHhH11,11p;BDHhH32,212p;3.4.50:242021201p,820,346822202p,2111Q,4322Q3.4.51:2113511LLPQ,21135220LLQD,6121123.4.52:311p,212p3.4.53:52241611LLPQ,41p,5162p。3.4.54:6339911LLPQ,11p,232p,321,222,112。3.4.55:25220112021Q,520,311251
15、120LLDQ,251p,352p3.4.56:422231213411ZZZZPQ,311321)311341(11XXXXQP,11YYYYQP341xP,342xP,1yP3.5.57:(1)46231212140206231FD,23FQ(2)31010212140206231IDFL,5 . 155FLQ3.5.58:420,211441LLQ(1)163151312114311FD,411641FP,11215721152114152FD,28111242FP,(2)015511521143121FFD,0。3.5.59:同 3.5.583.5.60:(1)11LPX ,11)(1
16、121PPPQXX,1XP,(2)3212121LLLY,3211)11(411PPPPQYY,(3)3321LLZ,3231132dLLdLLdZ,34312119141PLPLPQZZ。3.5.61:2232cossin2cossin22cbayxcxbxaA,cdcdbdadA2321,623383811431411222ccPcPPPcbaA,2236cPA。3.5.62:iiininiiiniiiLffLfLfF)(2111211,niiiniiiiniiiiiiiiniiiiiiniFPfPffPfPfPffPfPffP122211122122221122122112)2(1)(1
17、3.5.63:1499611214533112121121211YYQ3.5.67:(1)111)()()(BBBBBQBBBQTTLLTTXXLBBBBBXVLLTT1)(,TTTXXLLBBBBBBQQ1)((2)LIBBBBLBXVTT)(1,0)()()()()(11111BBBBBBBBBBBBBIBBBBQTTTTTTTVX0)()()()()(11111TTTTTTTTTTLVBBBBBBBBBBBBBBBBIBBBBQ3.6.71:(1)mS027.6000;(2))(3644)4314214(321220mm,mm11. 10;(3)mmSS72. 20;(4)mmSS92.
18、 12;(5)mmSS57. 120022。3.6.73:(1)iia,202222ipaaii,当ipa 时,202i,(2)npnpniiiniiii1212202)(,ipi202,iniiinppi12。3.6.74:设长度为S的水准路线的观测高差为单位权观测值。(1)2010120ii; (2)02dh; (3)05h3.7.77:)(2 . 44 . 2122mm。3.7.78:KKZ,FFY;TTTLLTTTTTTTTTTTTTTZZKKKKDKKKKKKKKEKKKKEKKKKEE)()()(TTTLLTTTTTTTTTTTTTTYZFKFKDFKFKFKFKEFFKKEFFK
19、KEE)()()(3.7.79:(1)22254ZD; (2)2212)2(5ZD3.7.80:12LL ,2122)(2D。3.8.81:221ZD,222)(2ZD,2)(21ZZD,)(2)(223.8.82:0110012222222YXYXYXWVaaaaaD。3.8.83:6224101P,21134226214226201101PQ9320112021Q,320。(1)421LLx,2112dLLdLLdx,2122211212121212232232113LLLLLLLLLLLLLLQxx212221202696LLLLQxxx(2)10220512211312yyQ,3020
20、2yyyQ1829zzQ,54202zzzQ0200520211312yzQ3.8.84:平差:平均分配闭合差,180321LLLw,wLLii31,即606060323131313231313132321321LLLLLL,21112111231LLQ32sinsinLLSSABAP,1LABAP,)cot(cot1122LdLLdLSdSAPAP,1LddAP32132001cotcot0LdLdLdLSLSddSAPAPAPAP0cot0cot10001cotcot0323222LSLSQLSLSAPAPLLAPAPSSSAPAPAPAPAPAPAPAPAPSXXcos,APAPAPSY
21、YsinAPAPAPAPAPPdSdSdXsincos,APAPAPAPAPPdSdSdYcossinAPAPAPAPAPAPAPAPPPddSSSdYdXcossinsincos,22PPPPPPYYXYXX3.8.85:1hHHAP,1,411p;2hHHBP,2,12p,ChhChhHHHPPP21215451)41(54)41(54,454251642516251222222212P,)(52mm,)(521mm3.8.87:321110011lll,22212,23222,23222222222123222221232221221011010010110100000011001122
22、2120220p,232220220p,23222221pp。3.8.88:3h为单位权观测值,所以321,hhh的权分别为1 , 4 , 2。321hhhw,3211172727572hhhwhh,3212274737474hhhwhh,3213376717171hhhwhh14514944149421492511p,5141p196121149164149921491612p,1211962p19614714936414912149113p,1471963p1hHHAC,514CHp。3.8.89:301040103811PQ,(1)381p; (2)22202220Q,)(4220cm,
23、)(238342112021cmQ,(3)3114dLdLLdF,836143113148112111LLLLQFF,)(23424)836(42121121202cmLLLLQFFFF。3.8.91:(1)34/2204p,1220,)(320(2)4316122201p(3)12/1612/220NNpN,16N。3.8.92:设丈量 100 米距离一次的中误差为,22201p,2202,442,)(1622cm,)(32220cm,500011001002ABABS,丈量 400 米距离一次的中误差为2214)(41664164222cmCD,2000011004002CDCDS。3.8
24、.94:21121LLLLPQ,303211211XYQ11211211XLQ,36211203YLQ,2121LLPP。3.8.95:32112211020dLdLdLLLdd,1874341002417243100221114010310202122221122121212LLLLLLLLLLLLLLDDQ213.8.96:2101310121LLLLPQ,31,LL独立21135131121LLP3.8.97:(1)60606021112111231321321LLLLLL,21112111231LLQ3332211QQQQww,31wwP,23iLP0112111311LwQ,同理,0
25、32LwLwQQ,3.8.100:令TL3211,TL6542,TL9873,平差后)3 , 2 , 1(211121112312iDiiLL986532sinsinsinsinsinsinABEDSSEDABEDCECEACACAB33cotcotcotcotcotcot986532998866553322ddddddSddddddSSdEDEDED22222222631DEDESSSED,,22222DESSED22222DESSED25200001210225DESSED,2512n,35014450122n。第四章4.2.08:(a)2, 2, 4rtn032hh,0421BAHhhh
26、H(b)3, 2, 5rtn0180321,321sinsinABSS,312sinsinABSS4.2.09: (b)观测值理解为方位角间接平差:未知参数个数等于必要观测数4.2.11:(a)2tu212132211,XXLXLXL(b)2tu221)()(APAPYYXXS,222)()(BPBPYYXXS223)()(CPCPYYXXS4.3.13:(1)021ALL,0)(2211ALL,00211221211221WLLALLLL,ALLW21(2)022121ALL,0)()(2222211ALL,022222221121ALLLL,022222212211ALLLL0222211
27、WLL,22221ALLW(3)4231sinsinsinsinLLLLZ ,4231sinsinsinsinLLLLZ 01)cotcotcot(cot44332211LLLLZZ, (i的单位为弧度)01)cotcotcot(cot44332211LLLLZZ, (i的单位为秒)0)11 (cotcotcotcot44332211ZLLLL0cotcotcotcot44332211WLLLL,)sinsinsinsin1 ()11 (3142LLLLZW(4)65543sinsin)sin(sinLLLLLBAZ,65543sinsin)sin(sinLLLLLBAZ0)11 (cotco
28、t)(cot(cot6655545433ZLLLLL0cotcot)cot()cot(cot66555445433WLLLLLLL)sin(sinsinsin1 ()11 (54365LLLALLBZW4.3.14:211)arctan(xxdxd,DADADDADADADADDADADDADADADADADDADADDDADADDADADADADDADDADADADxSYYySXXXXYYxXXYYyXXSXXXXYYxXXYYXyXXYYYXXYYXXYYxXXyYYXXYY)()(arctan)(1)()(arctan)(11arctanarctanarctan2020000220200
29、02000000(单位为弧度)DADADDADADADADADADxSYYySXXXXYYXXYY)()(arctanarctan2020000, (单位为秒)0arctan41ABADADXXYY线性化后为0arctan)()(41004120200ABADADDADADDADADXXYYxSYYySXX0)()(4120200WxSYYySXXDADADDADAD,ABADADXXYYW4100arctan4.6.27:9n,4t,5r,列 5 个条件方程4.6.28:(1)9n,4t,5r,3u,8urc,(2)9n,4t,5r,tu5,1s,101 nc,(3)9n,4t,5r,tu
30、4,参数独立,0s,9c,(4)9n,4t,5r,1u,6c。4.6.31:7n,4t,3r(1)tu3,附有参数的条件平差0651hhh0364xhh0332xhh0332xhh0212xxh034 xh(2)tu 4,参数独立,间接平差11xh22xh33xh44xh43215xxxxh4326xxxh327xxh(3)tu 4,参数独立,间接平差11xh22xhAHxxxh3213434xxhAHxh45AHxxh416AHxxh317(4)45tu,有 4 个独立参数,附有限制条件的间接平差11xh22xh533xxh654xxh35xh46xh57xh0431xxx(5)AHxh11
31、22xh3213xxxh314xxh55xh416xxh317xxh054AHxx第五章5.1.03:1,2,3rtn0321BAHhhhH,0321wvvv,BAHhhhHw321321111SSSdiagP,321SSSdiagQ 321SSSAQANTaa,wSSSwAQAKT32111)(111321321SSSdiagSSSwKQAVTwSSSSvii321,wSSSShvhhiiiii3215.1.04:2,2,4rtn0431CAHhhhH,021BAHhhH024001111014321vvvv,1122diagQ 4224TaaAQAN,45312442241211wNKaa
32、)(5582314501011011112231mmdiagKQAVT)(67. 167. 167. 267. 0mmVT5.2.10:(a)3, 3, 6rtn;(b)3, 3, 6rtn;(c)8, 6,14rtn。5.2.11:(a)7, 6,13rtn;5 个图形条件,2 个极条件。(b)6, 8,14rtn;3 个图形条件,3 个极条件。(c)8, 8,16rtn;6 个图形条件,2 个极条件。(d)6, 6,12rtn。1 个图形条件,1 个极条件,1 个圆周角条件。5.2.12:(a)12, 9,21rtn;7 个图形条件,3 个极条件,1 个方位角条件,1 个圆周角条件。(b)
33、8, 8,16rtn;6 个图形条件,2 个极条件。(c)8, 5,13rtn;5 个图形条件,2 个极条件,1 个方位角条件。(d)6, 6,12rtn。1 个图形条件, ,1 个圆周角条件,2 个极条件,2 个坐标条件。5.2.13:(a)2, 3, 5rtn;1 个角度图形条件(两角之和) , 1 个固定角条件。(b)12, 9,21rtn;7 个图形条件,3 个极条件,2 个边长条件。(c)3, 8,11rtn;1 个方位角条件,2 个坐标条件。(d)10,14,24rtn。3 个方位角条件,6 个坐标条件,1 个圆周角条件。5.2.26: (方向观测,不是方位角)5.3.30:min
34、PVVT,0WAV,0AALW,)(2WAVKPVVTT022AKPVVTT,AKPVTT,KQAVT,0WKAQAT,WNWAQAKaaT11)(,WKKWKAVKPQAVPVVTTTTTT)(rKWrPVVTT205.3.31:0AALW,0111)(ANALNWAQAKaaaaT011ANQAALNQAKQAVaaTaaTT,011011)(ANQALANQAIANQAALNQALVLLaaTaaTaaTaaTAQNQAQAQNAQANQAAQNQAAQNQAQAQNAIQANQAIANQAIQANQAIQaaTaaTaaTaaTaaTaaTaaTTaaTaaTLL111111111)(
35、)()()(5.3.32:32LLABC,32,LL独立,3432LLABCQQQ,43p。5.3.33:(1)21112111231LLQ,11LF ,231FP;(2)212180LLF,32011211310112111211120113122FFQ,232FP。(3)3223/1/11FLPP。(4)3213LLLF,0111000311112111211121113133FFQ,01333FFFQP。(5)1803213LLLF为无误差的已知量。5.3.36:(1)1hHHAB,13211hHPPB,7hHHAC,10217hHPPC6hHHAD,10216hHPPD,5hHHAE,
36、13215hHPPE(2)3hhCD,12213hhPPCD5.3.37:(1)1ABCDCDCFCFBFBFAB,1sinsinsinsinsinsin13634111ABCDSSLLLLLL61343111sinsinsinsinsinsinLLLLLLSSABCD,(iiivLL,iiLL 0,iivLd) ,)cotcotcotcotcot(cot1616111166443311vLvLvLvLvLvLSSdCDCD(答案中CDSFlnln)(2)88vLd。5.3.38:1ACBDBDABABAC,1sinsinsin)sin(817432ACBDSSLLLLLL,781324sin
37、)sin()sin(sinLLLLLLSSACBD,)cot)(cot()(cot(cot778181323244vLvvLLvvLLvLSSdBDBD5.3.39: (可参照习题答案) ,或设每公里观测高差中误差为,P点到A点的距离为s,则P点到B点的距离为sS 。)()(21hHSsShHSsHBAP,2232232)(SsSSsPH,令02PHdsd,得2Ss ,即最弱点在水准路线中央。5.3.40:minPVVT,0WAV,0AALW,)(2WAVKPVVTT,022AKPVVTT,AKPVTT,KQAVT,0WKAQAT,WNWAQAKaaT11)(,011ANQAALNQAKQAV
38、aaTaaTT,011011)(ANQALANQAIANQAALNQALVLLaaTaaTaaTaaT(1)011)()(ANQAfLANQAIfLfVLfFaaTTaaTTTT,0)()(11TaaTTTTaaTTFAQANQAQAfQAANQAIfQ(2)0)()(11111AQNAQANQAAQNQAfAQNQAANQAIfQaaTaaTaaTTaaTaaTTFV5.5.46:0360018043321LLLLL,002431321wvvwvvv,3601804323211LLwLLLw5.5.47:01002221 LL,0)100(2222211112LLvLvL21LLS ,211
39、2vLvLSd5.5.60:问题的提法不仅是确定一个圆,而是确定一个圆,以及该圆上的三个点。确定圆需要圆的半径(圆心已知) ,每确定圆上的一个点,需要该点的x坐标,故:2, 4, 6rtn设三点分别为CBA,,条件方程为:BCABACAB,。第六章6.1.06:1, 2, 1, 6rcun0608654321xVVVxVVV02654321VVVVVV,3162)(1WAQAKT,TTKQAV11111131,78321VVVx。6.1.07:(a)4, 3, 1, 3, 6crutn00001643552621XhHhhhhhhhhhA(b)3, 2, 1, 3, 5crutn0005324
40、321hhhXhhXhh6.1.08:(a)2, 1, 1, 3, 4crutn,00360324321XLLLLLL(b)2, 1, 1, 2, 2crutn036001803321XLLLL6.1.11:(1)1, 6, 7rtn,通过导线推算的 AB 边长与 A、B 两点反算的距离相等(2)设XAC1,12180XCD,其余各边方位角类推,0sin0cos4141BiiiABiiiAYSYXSX,6.1.12:(1)1, 8, 9rtn,所有三角形内角可由边长观测值反算,将DBCDAC,看作无定向导线。(2)设XAD,2, 1, 1cru;四边形ACDF、扇形DBEFA各列一个极条件方程。6.1.13:(1)1, 3, 4rtn,通过CDACACS,可得到两个待定点的坐标。(2)设ACX,列两个符合坐标条件方程。6.3.25:2, 6, 8rtn两个条件方程:扇形的极条件(以E为极点) ,四边形ACDB的内角和。