2021年全国统一高考乙卷数学试卷(理科)(新课标ⅰ)(原卷版及答案解析版).docx

上传人(卖家):雁南飞1234 文档编号:2817316 上传时间:2022-05-28 格式:DOCX 页数:21 大小:910.01KB
下载 相关 举报
2021年全国统一高考乙卷数学试卷(理科)(新课标ⅰ)(原卷版及答案解析版).docx_第1页
第1页 / 共21页
2021年全国统一高考乙卷数学试卷(理科)(新课标ⅰ)(原卷版及答案解析版).docx_第2页
第2页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2021年普通高等学校招生全国统一考试理科数学乙卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设2(z+z)+3(z-z)=4+6i,则z=( ).A.1-2i B.1+2iC.1+i D.1-i2.已知集合S=s|s=2n+1,nZ,T=t|t=4n+

2、1,nZ,则ST=( )A. B.S C.T D.Z3.已知命题p:xR,sinx1;命题q:xR,e|x|1,则下列命题中为真命题的是( )A.pq B.pqC.pq D.(pVq)4.设函数f(x)=1x1+x,则下列函数中为奇函数的是( )A.f(x-1)-1 B.f(x-1)+1C.f(x+1)-1 D.f(x+1)+15.在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为( )A.2 B. 3C. 4 D. 66.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分到1个项目,每个项目至少分配1名志愿者,则不同

3、的分配方案共有( )A.60种 B.120种C.240种 D.480种7.把函数y=f(x)图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3个单位长度,得到函数y=sin(x-4)的图像,则f(x)=( )A.sin(x2712) B. sin(x2+12)C. sin(2x712) D. sin(2x+12)8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为( )A. 74 B. 2332 C. 932 D. 299.魏晋时期刘徽撰写的海岛算经是关于测量的数学著作,其中第一题是测量海盗的高。如图,点E,H,G在水平线AC上,DE和FG是两个

4、垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”。则海岛的高AB=( ).A:表高表距表目距的差+表高 B:表高表距表目距的差表高C:表高表距表目距的差+表距 D:表高表距表目距的差表距10.设a0,若x=a为函数fx=axa2xb的极大值点,则( ).A:ab B:abC:aba2 D:aba211.设B是椭圆C:x2a2+y2b2=1(ab0)的上顶点,若C上的任意一点P都满足PB2b,则C的离心率的取值范围是( ).A:22,1 B:12,1C:0,22 D:0,1212.设a=2ln1.01,b=ln1.0

5、2,c=1.041,则( ).A:abc B:bcaC:bac D:cab二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线C:x2my2=1(m0)的一条渐近线为3x+my=0,则C的焦距为 .14.已知向量a=(1,3),b=(3,4),若(a-b)b,则= 。15.记ABC的内角A,B,C的对边分别为a,b,c,面积为3,B=60,a2+c2=3ac,则b= .16.以图为正视图和俯视图,在图中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

6、第17-21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17.(12分)某厂研究了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为s12和s22(1) 求x,y, s12,s22;(2) 判断新设备生产产品的该项

7、指标的均值较旧设备是否有显著提高(如果y-x2s12+s222,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).18.(12分)如图,四棱锥P-ABCD的底面是矩形,PD底面ABCD,PD=DC=1,M为BC的中点,且PBAM,(1) 求BC;(2) 求二面角A-PM-B的正弦值。19.(12分)记Sn为数列an的前n项和,bn为数列Sn的前n项和,已知2Sn+1bn=2.(1) 证明:数列bn是等差数列;(2) 求an的通项公式.20.(12分)设函数f(x)=ln(a-x),已知x=0是函数y=xf(x)的极值点。(1) 求a;(2) 设函数g(x)=x+f

8、(x)xf(x),证明:g(x)1.21.(12 分)己知抛物线C:x2=2py(p0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离的最小值为4.(1)求p;(2)若点P在M上,PA,PB是C的两条切线,A,B是切点,求PAB的最大值.(二)选考题:共10分,请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.选修4一4:坐标系与参数方程(10分)在直角坐标系xOy中,C的圆心为C(2,1),半径为1.(1)写出C的一个参数方程;的极坐标方程化为直角坐标方程;(2)过点F(4,1)作C的两条切线, 以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条直线

9、的极坐标方程.23.选修4一5:不等式选讲(10分)已知函数f(x)=|x-a|+|x+3|.(1)当a=1时,求不等式f(x)6的解集;(2)若f(x) a ,求a的取值范围.2021年普通高等学校招生全国统一考试(全国乙卷) 数学(理)一、选择题1.设,则( )A.B.C.D.答案:C解析:设,则,所以,所以.2.已知集合,则( )A.B.C.D.答案:C解析:,;当,时,;当,时,.所以,.故选C.3.已知命题;命题,则下列命题中为真命题的是( )A.B.C.D.答案:A解析:根据正弦函数的值域,故,为真命题,而函数为偶函数,且时,故,恒成立.,则也为真命题,所以为真,选A.4.设函数,

10、则下列函数中为奇函数的是( )A.B.C.D.答案:B解析:,向右平移一个单位,向上平移一个单位得到为奇函数.5.在正方体中,为的中点,则直线与所成的角为( )A.B.C.D.答案:D解析:如图,为直线与所成角的平面角.易知为正三角形,又为中点,所以.6.将名北京冬奥会志愿者分配到花样滑冰,短道速滑冰球和冰壶个项目进行培训,每名志愿者只分配到个项目,每个项目至少分配名志愿者,则不同的分配方案共有( )A.种B.种C.种D.种答案:C解析:所求分配方案数为.7.把函数图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数的图像,则( )A.B.C.D.答案:B解

11、析:逆向:.故选B.8.在区间与中各随机取个数,则两数之和大于的概率为( )A.B.C.D.答案:B解析:由题意记,题目即求的概率,绘图如下所示.故.9.魏晋时期刘徽撰写的海岛算经是关于测量的数学著作.其中第一题是测量海岛的高.如图,点在水平线上,和是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,称为“表距”,和都称为“表目距”.与的差称为“表目距的差”,则海岛的高( )A.B.C.D.答案:A解析:连接交于,则.记,则.而,.所以.故,所以高.10.设,若为函数的极大值点,则A.B.C.D.答案:D解析:若,其图像如图(1),此时,;若,时图像如图(2),此时,.综上,.11.设是椭

12、圆:的上顶点,若上的任意一点都满足,则的离心率的取值范围是( )A.B.C.D.答案:C解析:由题意,点,设,则,故,.由题意,当时,最大,则,.12.设,则( )A.B.C.D.答案:B解析:设,则,易得.当时,故.所以在上单调递减,所以,故.再设,则,易得.当时,所以在上.故在上单调递增,所以,故.综上,.二、填空题13.已知双曲线:的一条渐近线为,则的焦距为 .答案:解析:易知双曲线渐近线方程为,由题意得,且一条渐近线方程为,则有(舍去),故焦距为.14.已知向量,若,则 .答案:解析:由题意得,即,解得.15.记的内角,的对边分别为,面积为, ,则 .答案:解析:,所以,由余弦定理,所

13、以.16.以图为正视图,在图中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).答案:或解析:由高度可知,侧视图只能为或.侧视图为,如图(1),平面平面,俯视图为.俯视图为,如图(2),平面,俯视图为.三、解答题17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了件产品,得到产品该项指标数据如下: 旧设备和新设备生产产品的该项指标的样本平均数分别记为和, 样本方差分别己为和.(1)求,:(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高 ( 如果,则认为

14、新设备生产产品的该项指标的均值较旧设备有显著提高 , 否则不认为有显著提高 ) 。答案:见解析解析:(1)各项所求值如下所示.,.(2)由(1)中数据得.显然.所以不认为新设备生产产品的该项指标的均值较旧设备有显著提高。18.如图,四棱锥的底面是矩形,底面,,为的中点,且.(1)求;(2)求二面角的正弦值.答案:见解析解析:(1)因为平面,且矩形中,.所以以,分别为,轴正方向,为原点建立空间直角坐标系.设,所以,因为,所以所以,所以.(2)设平面的一个法向量为,由于,则.令,的.设平面的一个法向量为,则.令,的.所以,所以二面角的正弦值为.19.记为数列的前项和,为数列的前项积,已知.(1)证

15、明:数列是等差数列;(2)求的通项公式.答案:见解析解析:(1)由已知,则,故是以为首项,为公差的等差数列.(2)由(1)知,则,时,时,故.20.设函数,已知是函数的极值点.(1)求;(2)设函数,证明:.答案:见解析解析:(1)令则.是函数的极值点.解得:;(2) 由(1)可知: ,要证,即证(且).当时,.当时,.只需证明令,且易知.则(i)当时,易得,则在上单调递减,得证.(ii)当时,易得,则在上单调递增.,得证.综上证得.21.已知抛物线:的焦点为,且与圆:上点的距离的最小值为.(1)求;(2)若点在上,是的两条切线,是切点,求面积的最大值.答案:见解析解析:(1)焦点到的最短距离

16、为,所以.(2)抛物线,设,得:,:,且,都过点,则,故:,即,联立,得,所以,所以.而,故当时,达到最大,最大值为.22.在直角坐标系中,的圆心为,半径为.(1)写出的一个参数方程;(2)过点作的两条切线.以坐标原点为极点,轴正半轴为极轴建立坐标系,求这两条切线的极坐标方程.答案:见解析解析:(1)的参数方程为(为参数)(2)的方程为当直线斜率不存在时,直线方程为,此时圆心到直线距离为,舍去;当直线斜率存在时,设直线方程为,化简为,此时圆心到直线的距离为,化简得,两边平方有,所以.代入直线方程并化简得或化为极坐标方程为或.23.已知函数.(1)当时,求不等式的解集;(2)若,求的取值范围.答案:见解析解析:当时,当时,不等式,解得;当时,不等式,解得;当时,不等式,解得.综上,原不等式的解集为.(2)若,即,因为(当且仅当时,等号成立),所以,所以,即或,解得.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 高考专区 > 历年真题
版权提示 | 免责声明

1,本文(2021年全国统一高考乙卷数学试卷(理科)(新课标ⅰ)(原卷版及答案解析版).docx)为本站会员(雁南飞1234)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|