1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年北京市顺义区中考数学真题模拟测评 (A)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有理数a,b在数轴上的对应点的位置如图所示,则正确的结论
2、是( )ABCD2、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角,则这个人工湖的直径AD为( )mABCD2003、为庆祝中国共产党成立100周年,某学校开展学习“四史”(党史、新中国史、改革开放史、社会主义发展史)交流活动,小亮从这四本书中随机选择1本进行学习心得体会分享,则他恰好选到新中国史这本书的概率为()ABCD14、若,则的值是( )AB0C1D20225、下列利用等式的性质,错误的是( )A由,得到B由,得到C由,得到D由,得到6、神舟号载人飞船于2021年10月16日凌晨成功对接中国空间站,自升空以来神舟十三号飞船每天绕地球16圈,按地球赤道周长
3、计算神舟十三号飞船每天飞行约641200千米,641200用科学记数法表示为( )ABCD7、若关于x的不等式组有且仅有3个整数解,且关于y的方程的解为负整数,则符合条件的整数a的个数为( )A1个B2个C3个D4个8、深圳湾“春笋”大楼的顶部如图所示,则该几何体的主视图是() 线 封 密 内 号学级年名姓 线 封 密 外 ABCD9、对于二次函数yx22x3,下列说法不正确的是( )A开口向下B当x1时,y随x的增大而减小C当x1时,y有最大值3D函数图象与x轴交于点(1,0)和(3,0)10、如图,四棱柱的高为9米,底面是边长为6米的正方形,一只蚂蚁从如图的顶点A开始,爬向顶点B那么它爬行
4、的最短路程为()A10米B12米C15米D20米第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将去括号后,方程转化为_2、中午放学后,有a个同学在学校一食堂门口等侯进食堂就餐,由于二食堂面积较大,所以配餐前二食堂等待就餐的学生人数是一食堂的2倍,开始配餐后,仍有学生续前来排队等候就餐,设一食堂排队的学生人数按固定的速度增加,且二食堂学生人数增加的速度是一食堂的2倍,两个食堂每个窗口阿姨配餐的速度是一样的,一食堂若开放12个配餐窗口,则需10分钟才可为排队就餐的同学配餐完毕;二食堂若开放2个配餐窗口,则14分钟才可为排队就餐的同学配餐完毕;若需要在15分钟内配餐完毕,则
5、两个食堂至少需要同时一共开放_个配餐窗口3、计算:_,_,_分解因式:_,_,_4、已知点A的坐标是,点B是正比例函数的图像上一点,若只存在唯一的点B,使为等腰三角形,则k的取值范围是_5、最新人口普查数据显示上海的常住人数约为24870000人,将24870000用科学记数法表示是:_三、解答题(5小题,每小题10分,共计50分)1、如图,D、E分别是AC、AB上的点,ADEABC,且DE8,BC24,CD18,AD6,求AE、BE的长2、沙坪坝区某街道为积极响应“开展全民义务植树40周年”活动,投入一定资金绿化一块闲置空地,购买了甲、乙两种树木共70棵,且甲种树木单价、乙种树木单价每棵分别
6、为90元,80元,共用去资金6000元(1)求甲、乙两种树木各购买了多少棵?(2)经过一段时间后,种植的这批树木成活率高,绿化效果好该街道决定再购买一批这两种树木绿化另一块闲置空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了a%,乙种树木单价下降了a%,且总费用不超过6500元,求a的最大整数值3、如图,已知,求证: 线 封 密 内 号学级年名姓 线 封 密 外 4、已知:如图,在中,是边边上的高,是中线,是的中点,求证:5、如图,在ABC中,已知D是BC边的中点,过点D的直线GF交AC于F,交AC的平行线BG于点G,DEGF,交AC的延长线于点E,联结EG(1)说明BG与
7、CF相等的理由(2)说明BGD与DGE相等的理由-参考答案-一、单选题1、C【分析】由数轴可得: 再逐一判断的符号即可.【详解】解:由数轴可得: 故A,B,D不符合题意,C符合题意;故选C【点睛】本题考查的是利用数轴比较有理数的大小,绝对值的含义,有理数的加法,减法,乘法的结果的符号确定,掌握以上基础知识是解本题的关键.2、B【分析】连接BD,利用同弧所对圆周角相等以及直径所对的角为直角,求证为等腰直角三角形,最后利用勾股定理,求出AD即可【详解】解:连接BD,如下图所示: 线 封 密 内 号学级年名姓 线 封 密 外 与所对的弧都是 所对的弦为直径AD, 又,为等腰直角三角形,在中,由勾股定
8、理可得: 故选:B【点睛】本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定理求解边长,是解决本题的主要思路3、A【分析】直接根据概率公式求解即可【详解】解:由题意得,他恰好选到新中国史这本书的概率为,故选:A【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比4、C【分析】先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可【详解】解:,a-2=0,b+1=0,a=2,b=-1,=,故选C【点睛】本题考查了非负数的性质,以及求代数式的值,根据非负数的性质求出a和b的值是解
9、答本题的关键5、B【分析】根据等式的性质逐项分析即可【详解】A.由,两边都加1,得到,正确; 线 封 密 内 号学级年名姓 线 封 密 外 B.由,当c0时,两边除以c,得到,故不正确;C.由,两边乘以c,得到,正确;D.由,两边乘以2,得到,正确;故选B【点睛】本题考查了等式的基本性质,正确掌握等式的性质是解题的关键等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式6、B【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数
10、点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正整数;当原数的绝对值1时,n是负整数【详解】解:641200用科学记数法表示为:641200=,故选择B【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值7、C【分析】解不等式组得到,利用不等式组有且仅有3个整数解得到,再解分式方程得到,根据解为负整数,得到a的取值,再取共同部分即可【详解】解:解不等式组得:,不等式组有且仅有3个整数解,解得:,解方程得:,方程的解为负整数,a的值为:-13、-11、-9、-7、-5、-3,符合条件的
11、整数a为:-13,-11,-9,共3个,故选C【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解也考查了解一元一次不等式组的整数解8、A【分析】根据简单几何体的三视图的意义,得出从正面看所得到的图形即可【详解】解:从正面看深圳湾“春笋”大楼所得到的图形如下: 线 封 密 内 号学级年名姓 线 封 密 外 故选:A【点睛】本题考查简单几何体的三视图,理解视图的意义,掌握简单几何体三视图的画法是正确解答的关键9、C【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题【详解】解:y=-x2+2x
12、+3=-(x-1)2+4,a=-10,该函数的图象开口向下,故选项A正确;对称轴是直线x=1,当x1时,y随x的增大而减小,故选项B正确;顶点坐标为(1,4),当x=1时,y有最大值4,故选项C不正确;当y=0时,-x2+2x+3=0,解得:x1=-1,x2=3,函数图象与x轴的交点为(-1,0)和(3,0),故D正确故选:C【点睛】本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答10、C【分析】将立体图形展开,有两种不同的展法,连接AB,利用勾股定理求出AB的长,找出最短的即可【详解】解:如图,(1)AB;(2)AB15,由于15,则蚂蚁爬行的最短
13、路程为15米故选:C【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了平面展开-最短路径问题,要注意,展开时要根据实际情况将图形安不同形式展开,再计算二、填空题1、【分析】根据去括号法则解答即可【详解】解:原方程去括号,得:故答案为:【点睛】本题考查了一元一次方程的解法,熟练掌握一元一次方程的解题步骤是解答本题的关键去括号时,一是注意不要漏乘括号内的项,二是明确括号前的符号2、29【分析】设每分钟来一食堂就餐的人数为x人,食堂每个窗口阿姨配餐的速度为每分钟y人,则每分钟来二食堂就餐的人数为2x人,根据“一食堂若开放12个配餐窗口,则需10分钟才可为排队就餐的同学配餐完毕;二食堂
14、若开放20个配餐窗口,则14分钟才可为排队就餐的同学配餐完毕”,即可得出关于x,y,a的三元一次方程组,解之即可用含y的代数式表示出a,x,设设两个食堂同时一共开放m个配餐窗口,根据需要在15分钟内配餐完毕,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论【详解】解:设每分钟来一食堂就餐的人数为x人,食堂每个窗口阿姨配餐的速度为每分钟y人,则每分钟来二食堂就餐的人数为2x人,依题意得:,设两个食堂同时一共开放m个配餐窗口,依题意得:15mya+2a+15(x+2x),解得:m29故答案为:29【点睛】本题考查了三元一次方程组的应用以及一元一次不等式的应用,找准等量关系,正确列出三
15、元一次方程组是解题的关键3、 【分析】根据幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解分别计算即可【详解】解:计算:,分解因式:,故答案为:;【点睛】本题考查了幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解,掌握以上运算法则和因式分解的方法是解题的关键4、【分析】 线 封 密 内 号学级年名姓 线 封 密 外 作OA的垂直平分线,交OA于点C,y轴于点D根据题意结合垂直平分线的性质可判断出当该正比例函数图象在与OA的垂直平分线平行的直线(包括此直线)和y轴之间时,在x0的条件下,该函数图象上只存在唯一的点B,使为等腰三角形再
16、根据点A的坐标,即可求出直线CD的斜率,即可得出k的取值范围【详解】如图,作OA的垂直平分线,交OA于点C,y轴于点D由垂直平分线的性质可知,当点B在OA的垂直平分线上时,即满足为等腰三角形,但此时在该正比例函数上还有一点B可使为等腰三角形,如图,和都为等腰三角形,此时不符合只存在唯一的点B,使为等腰三角形,故要想只存在唯一的点B,使为等腰三角形,并在x0的条件下,只能B点不在OA的垂直平分线上,即该正比例函数图象在与OA的垂直平分线平行的直线(包括此直线)和y轴之间设OA的函数解析式为:,则解得:设CD的函数解析式为:,CD在OA的垂直平分线上,即,解得:该正比例函数图象在与OA的垂直平分线
17、平行的直线(包括此直线)和y轴之间,即故答案为:【点睛】本题考查垂直平分线的性质,等腰三角形的定义,一次函数和正比例函数的图像和性质,根据题意理解当该正比例函数图象在与OA的垂直平分线平行的直线(包括此直线)和y轴之间时,在x0的条件下,该函数图象上只存在唯一的点B,使为等腰三角形是解答本题的关键5、【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a10n, 为正整数,且比原数的整数位数少1,据此可以解答【详解】解:故答案是:【点睛】本题考查用科学记数法表示较大的数,熟练掌握一般形式为 ,其中, 是正整数,解题的关键是确定 和 的值三、解答题1、AE=8,BE=10【分析】由ADEAB
18、C,且DE=8,BC=24,CD=18,AD=6,根据相似三角形的对应边成比例,即可求得答案 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:ADEABC,DE=8,BC=24,CD=18,AD=6,AC=AD+CD=24,AE=8,AB=18,BE=AB-AE=10【点睛】本题考查了相似三角形的性质注意掌握相似三角形的对应边成比例定理的应用是解此题的关键2、(1)甲种树木购买了40棵,乙种树木购买了30棵(2)a的最大值为25【分析】(1)设甲种树木购买了x棵,乙种树木购买了y棵,根据总费用=单价数量结合“购买了甲、乙两种树木共70棵,共用去资金6000元”,即可得出关于x,y的二
19、元一次方程组,解之即可得出结论;(2)根据总费用=单价数量结合总费用不超过6500元,即可得出关于a的一元一次不等式,解之取其中的最大值即可得出结论【小题1】解:设甲种树木购买了x棵,乙种树木购买了y棵,根据题意得:,解得:,答:甲种树木购买了40棵,乙种树木购买了30棵【小题2】根据题意得:90(1+a%)40+80(1-a%)306500,解得:a25答:a的最大值为25【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式3、见解析【分析】先证明,然后利用AAS证明BAC
20、EAF即可得到BC=EF【详解】解:,即,在BAC和EAF中,BACEAF(AAS),BC=EF【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题主要考查了全等三角形的性质与判定条件,熟知全等三角形的性质与判定条件是解题的关键4、见详解【分析】连接DE,由中垂线的性质可得DE=DC,再由直角三角形斜边上的中线等于斜边的一半得到DE=BE,进而得到CDAB【详解】证明:如图,连接DE,F是CE的中点,DFCE,DF垂直平分CE,DE=DCADBC,CE是边AB上的中线,DE是RtABD斜边上的中线,即DE=BE=AB,CD =DE=AB【点睛】本题考查了中垂线的性质,直角三角形斜边上的
21、中线的性质,推出DE=CD是解决本题的关键5、(1)见祥解(2)见祥解【分析】(1)求出BDDC,GBDDCF,证出BDGCDF即可;(2)根据线段垂直平分线性质得出EFEG,求出DFEDGE,DFEBGD,即可得出答案(1)解 D为BC中点,BDDC(中点的定义),BGFC(已知),GBDDCF(两直线平行,内错角相等),在BDG和CDF中,BDGCDF(ASA),BGCF(全等三角形对应边相等);(2)解:D是BC边的中点,DEGF,即DE为线段GF的中垂线,EFEG,DFEDGE(等边对等角),)DFEBGD(全等三角形对应角相等),BGDDGE(等量代换)【点睛】本题考查全等三角形的判定与性质,线段垂直平分线的性质解答本题的关键是明确题意,找出所求问题需要的条件,证明三角形全等. 线 封 密 内 号学级年名姓 线 封 密 外