(初升高数学)衔接班教案(六)函数性质提高.doc

上传人(卖家):四川三人行教育 文档编号:3091774 上传时间:2022-07-09 格式:DOC 页数:4 大小:332KB
下载 相关 举报
(初升高数学)衔接班教案(六)函数性质提高.doc_第1页
第1页 / 共4页
(初升高数学)衔接班教案(六)函数性质提高.doc_第2页
第2页 / 共4页
(初升高数学)衔接班教案(六)函数性质提高.doc_第3页
第3页 / 共4页
(初升高数学)衔接班教案(六)函数性质提高.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、(数学1必修)第一章(下) 函数的基本性质基础训练A组一、选择题1已知函数为偶函数,则的值是( )A. B. C. D. 2若偶函数在上是增函数,则下列关系式中成立的是( )A BC D3如果奇函数在区间 上是增函数且最大值为,那么在区间上是( )A增函数且最小值是 B增函数且最大值是C减函数且最大值是 D减函数且最小值是4设是定义在上的一个函数,则函数在上一定是( )A奇函数 B偶函数 C既是奇函数又是偶函数 D非奇非偶函数。5下列函数中,在区间上是增函数的是( )A B C D6函数是( )A是奇函数又是减函数 B是奇函数但不是减函数 C是减函数但不是奇函数 D不是奇函数也不是减函数二、填

2、空题1设奇函数的定义域为,若当时, 的图象如右图,则不等式的解是 2函数的值域是_。3已知,则函数的值域是 .4若函数是偶函数,则的递减区间是 .5下列四个命题(1)有意义; (2)函数是其定义域到值域的映射;(3)函数的图象是一直线;(4)函数的图象是抛物线,其中正确的命题个数是_。三、解答题1判断一次函数反比例函数,二次函数的单调性。2已知函数的定义域为,且同时满足下列条件:(1)是奇函数;(2)在定义域上单调递减;(3)求的取值范围。3利用函数的单调性求函数的值域;4已知函数. 当时,求函数的最大值和最小值; 求实数的取值范围,使在区间上是单调函数。(数学1必修)第一章(下) 函数的基本

3、性质综合训练B组一、选择题1下列判断正确的是( )A函数是奇函数 B函数是偶函数C函数是非奇非偶函数 D函数既是奇函数又是偶函数2若函数在上是单调函数,则的取值范围是( ) A B C D3函数的值域为( )A B C D4已知函数在区间上是减函数,则实数的取值范围是( )A B C D5下列四个命题:(1)函数在时是增函数,也是增函数,所以是增函数;(2)若函数与轴没有交点,则且;(3) 的递增区间为;(4) 和表示相等函数。其中正确命题的个数是( )A B C Ddd0t0 tOAdd0t0 tOBdd0t0 tOCdd0t0 tOD6某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累

4、了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( )二、填空题1函数的单调递减区间是_。2已知定义在上的奇函数,当时,那么时, .3若函数在上是奇函数,则的解析式为_.4奇函数在区间上是增函数,在区间上的最大值为,最小值为,则_。5若函数在上是减函数,则的取值范围为_。三、解答题1判断下列函数的奇偶性(1) (2)2已知函数的定义域为,且对任意,都有,且当时,恒成立,证明:(1)函数是上的减函数;(2)函数是奇函数。 3设函数与的定义域是且,是偶函数, 是奇函数,且,求和的解析式.4设为实数,函数,(1)讨论的奇偶性;(2)求的最小值。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中 > 数学 > 初高中衔接
版权提示 | 免责声明

1,本文((初升高数学)衔接班教案(六)函数性质提高.doc)为本站会员(四川三人行教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|