20春七数下(北师)第五章 小结与复习 精品课件.pptx

上传人(卖家):田田田 文档编号:327938 上传时间:2020-03-04 格式:PPTX 页数:25 大小:191.83KB
下载 相关 举报
20春七数下(北师)第五章 小结与复习 精品课件.pptx_第1页
第1页 / 共25页
20春七数下(北师)第五章 小结与复习 精品课件.pptx_第2页
第2页 / 共25页
20春七数下(北师)第五章 小结与复习 精品课件.pptx_第3页
第3页 / 共25页
20春七数下(北师)第五章 小结与复习 精品课件.pptx_第4页
第4页 / 共25页
20春七数下(北师)第五章 小结与复习 精品课件.pptx_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、,要点梳理,考点讲练,当堂练习,课堂小结,小结与复习,第五章 生活中的轴对称,七年级数学下(BS) 教学课件,1.轴对称图形:把一个图形沿着一条直线折叠,如 果直线两旁的部分能够完全重合,那么这个图形 就叫作轴对称图形.这条直线叫作对称轴. 2.轴对称:把一个图形沿一条直线折叠,如果它能 与另一个图形完全重合,那么这两个图关于这条 直线成轴对称.这条直线叫作对称轴.,要点梳理,一.轴对称图形与轴对称,3.轴对称图形和轴对称的区别与联系,轴对称图形,轴对称,区别,联系,图形,(1)轴对称图形是指( ) 具 有特殊形状的图形, 只对( ) 图形而言; (2)对称轴( ) 只有一条,(1)轴对称是指

2、( )图形 的位置关系,必须涉及 ( )图形; (2)只有( )对称轴.,如果把轴对称图形沿对称轴 分成两部分,那么这两个图形 就关于这条直线成轴对称.,如果把两个成轴对称的图形 拼在一起看成一个整体,那 么它就是一个轴对称图形.,一个,一个,不一定,两个,两个,一条,4.轴对称的性质:,在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等.,1等腰三角形的性质,二.简单的轴对称图形,角平分线上的点到角两边的距离相等.,3.角平分线的性质,2.线段垂直平分线的性质 线段垂直平分线上的点到线段两端点的距离相等.,例1 如图,ABC和ABC关于直线MN对称

3、,ABC和ABC关于直线EF对称. (1)画直线EF; (2)直线MN与EF相交于点O,试探究BOB与直线 MN,EF所夹锐角的数量关系.,考点讲练,【分析】连接ABC和ABC中的任意一对对应点,作所得线段的垂直平分线即为直线EF,根据轴对称的性质可求角的数量关系.,A,B,C,A,B,C,A,B,C,解:(1)如图,连接B B ,作线段B B 的垂直平分线EF,则直线EF是A B C 和A B C 的对称轴;,(2)连接BO,BO,BO, ABC和ABC关于直线MN对称,, BOM =B OM., ABC和ABC关于直线EF对称,,BOE =BOE.,BOB=2(BOM+BOE) =2.,M

4、,N,轴对称和轴对称图形的概念是本章的重点,通过观察日常生活中的轴对称现象,理解轴对称图形和轴对称的概念的区别与联系;学习轴对称变换,不但要会画一个图形关于某直线的对称图形,还要会通过简单的图案设计确定最短路线等.,1.下面的图形是轴对称图形吗?如果是,你能指出它的对称轴吗?,2.如图所示,作出ABC关于直线x=1的对称图形,解:ABC就是所求作的图形.,例2 如图所示,在ABC中,AB=AC,BDAC于D.试说明: BAC = 2DBC.,【分析】根据等腰三角形“三线合一”的性质,可作顶角BAC的平分线,来获取角的数量关系.,解:作BAC的平分线AE,交BC于点E,如图所示,则,AB=AC,

5、 AEBC., 2+ ACB=90 .,BDAC, DBC+ ACB=90 ., 2= DBC., BAC= 2DBC.,解: AD 是BC 的垂直平分线, AB =AC,BD=CD. 点C 在AE 的垂直平分线上, AC =CE,AB=AC=CE, AB+BD=DE.,例3 如图,AD是BC的垂直平分线,点C 在AE 的垂直平分线上,AB,AC,CE 的长度有什么关系?AB+BD与DE 有什么关系?,【分析】运用线段的垂直平分线的性质进行线段之间 的转化即可.,常常运用线段的垂直平分线的性质“线段垂直平分线上的点到线段两端的距离相等”进行线段之间的转换来求线段之间的关系及周长的和差等,有时候

6、与等腰三角形的”三线合一”结合起来考查.,例4 有公路l1同侧、l2异侧的两个城镇A,B,如图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置(保留作图痕迹,不要求写出画法).,【解析】利用线段垂直平分线及角平分线的性质解题. 解:根据题意知道,点C应满足两个条件,一是在线 段AB的垂直平分线上;二是在两条公路夹角的平分 线上,所以点C应是它们的交点. (1)作两条公路夹角的平分线OD或OE;,(2)作线段AB的垂直平分线FG; 则射线OD,OE与

7、直线FG的交点C1,C2就是所求的位置.,3.如图,在ABC中,DE是AC的垂直平分线,AC=5厘米,ABD的周长等于13厘米,则ABC的周长是 .,C,18厘米,4. 如图所示,已知ABC中,PEAB交BC于点E,PFAC交BC于点F,点P是AD上一点,且点D到PE的距离与到PF的距离相等,判断AD是否平分BAC,并说明理由,解:AD平分BAC理由如下: D到PE的距离与到PF的距离相等, 点D在EPF的平分线上 12 又PEAB,13 同理,24 34,AD平分BAC,分类讨论思想,例5 等腰三角形的周长为20cm,其中两边的差为8cm,求这个等腰三角形各边的长.,【解析】要考虑腰比底边长

8、和腰比底边短两种情况.,解:若腰比底边长,设腰长为xcm,则底边长为(x8)cm, 根据题意得 2x+x8=20,解得x= , x8= ; 若腰比底边短,设腰长为ycm,则底边长为(y+8)cm,根据 题意得2y+y+8=20,解得y=4, y+8=12,但4+4=812,不符合题意. 故此等腰三角形的三边长分别为,根据等腰三角形的性质求边长或度数时,若已知条件未明确所给的角是顶角还是底角、所给的边是腰还是底边时,要分两种情况才能使答案不致缺漏,同时,求出答案后要和三角形的内角和定理及三角形三边关系对照,若不符合,则答案不成立,要舍去,这样才能保证答案准确.,5.若等腰三角形的两边长分别为4和6,求它的周长.,解:若腰长为6,则底边长为4, 周长为 6+6+4=16; 若腰长为4,则底边长为6, 周长为4+4+6=14. 故这个三角形的周长为14或16.,生 活 中 的 轴 对 称,轴对称现象,两个图形成轴对称,轴对称图形,对称轴,简单的轴 对称图形,等腰三角形的性质,轴对称图形的性质,对称性,“三线合一”,底角相等,线段垂直平分线上的点到这条线段 两个端点的距离相等,角的平分线上的点到这个角的两边的 距离相等,应用,图案设计,计算与推理,课堂小结,课后作业,见章末练习,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 数学 > 北师大版 > 七年级下册
版权提示 | 免责声明

1,本文(20春七数下(北师)第五章 小结与复习 精品课件.pptx)为本站会员(田田田)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|