1、第三节一、三重积分的概念三重积分的概念 二、三重积分的计算二、三重积分的计算三重积分 一、三重积分的概念一、三重积分的概念 类似二重积分解决问题的思想,采用kkkkv),(),(kkkkv引例引例:设在空间有限闭区域 内分布着某种不均匀的物质,),(Czyx求分布在 内的物质的可得nk 10limM“大化小大化小,常代变常代变,近似和近似和,求极限求极限”解决方法解决方法:质量 M.密度函数为定义定义.设,),(,),(zyxzyxfkkknkkvf),(lim10存在,),(zyxfvzyxfd),(称为体积元素体积元素,vd.dddzyx若对 作任意分割任意分割:任意取点任意取点则称此极限
2、为函数在上的三重积分三重积分.在直角坐标系下常写作三重积分的性质与二重积分相似.性质性质:例如),2,1(nkvk,),(kkkkv下列“乘中值定理中值定理.),(zyxf设在有界闭域 上连续,则存在,),(使得vzyxfd),(Vf),(V 为 的体积,积和式”极限记作记作二、三重积分的计算二、三重积分的计算1.利用直角坐标计算三重积分利用直角坐标计算三重积分方法方法1.投影法(“先一后二”)方法方法2.截面法(“先二后一”)方法方法3.三次积分法,0),(zyxf先假设连续函数 并将它看作某物体 通过计算该物体的质量引出下列各计算最后,推广到一般可积函数的积分计算.的密度函数,方法:zxy
3、DDyxdd 方法方法1.投影法投影法(“先一后二先一后二”)Dyxyxzzyxz),(),(),(:21yxzzyxfyxzyxzddd),(),(),(21该物体的质量为vzyxfd),(),(),(21d),(yxzyxzzzyxfDyxzyxzzzyxfyx),(),(21d),(ddyxzyxfdd),(细长柱体微元的质量为),(2yxzz),(1yxzz yxdd微元线密度记作ab方法方法2.截面法截面法(“先二后一先二后一”)bzaDyxz),(:为底,d z 为高的柱形薄片质量为zD以xyz该物体的质量为vzyxfd),(baZDyxzyxfdd),(ZDbayxzyxfzdd
4、),(dzdzzDzDyxzyxfdd),(zzyxfd),(面密度zd记作投影法方法方法3.三次积分法三次积分法设区域:利用投影法结果,bxaxyyxyDyx)()(:),(21),(),(21yxzzyxz把二重积分化成二次积分即得:vzyxfd),(),(),(21d),(ddyxzyxzDzzyxfyxvzyxfd),(),(),(21d),(yxzyxzzzyxf)()(21dxyxyybaxd小结小结:三重积分的计算方法三重积分的计算方法方法方法1.“先一后二先一后二”方法方法2.“先二后一先二后一”方法方法3.“三次积分三次积分”),(),(21d),(ddyxzyxzDzzyx
5、fyxvzyxfd),(ZDbayxzyxfzdd),(d),(),()()(2121d),(ddyxzyxzxyxybazzyxfyx具体计算时应根据vzyxfd),(vzyxfd),(三种方法(包含12种形式)各有特点,被积函数及积分域的特点灵活选择.其中 为三个坐标例例1.计算三重积分,dddzyxx12zyx所围成的闭区域.1xyz121解解:zyxxddd)1(01021d)21(dxyyxxxyxz210d1032d)2(41xxxxyxz210)1(021xy10 x)1(021dxy10d xx481面及平面xyz例例2.计算三重积分,ddd2zyxz.1:222222czby
6、ax其中解解:zyxzddd2cczczbazd)1(2222czc2222221:czbyaxDzzDyxddcczz d23154cbaabc用用“先二后一先二后一”zDzoxyz2.利用柱坐标计算三重积分利用柱坐标计算三重积分,R),(3zyxM设,代替用极坐标将yx),z(则就称为点M 的柱坐标.z200sinyzz cosx直角坐标与柱面坐标的关系:常数坐标面分别为圆柱面常数半平面常数z平面oz),(zyxM)0,(yx如图所示,在柱面坐标系中体积元素为zzdddzvdddd因此zyxzyxfddd),(),(zF其中),sin,cos(),(zfzF适用范围适用范围:1)积分域积分
7、域表面用柱面坐标表示时方程简单方程简单;2)被积函数被积函数用柱面坐标表示时变量互相分离变量互相分离.zdddxyzodd其中为由例例3.计算三重积分zyxyxzddd22xyx2220),0(,0yaazz所围解解:在柱面坐标系下:cos202ddcos342032acos2020az 0及平面2axyzozvdddd20dazz0dzzddd2原式298a 柱面cos2成半圆柱体.o oxyz例例4.计算三重积分解解:在柱面坐标系下h:hz42dhdh2022)4(124)41ln()41(4hhhhz h2020h202d120d,1ddd22yxzyxzyx422)0(hhz所围成.与
8、平面其中由抛物面42rzvdddd原式=3.利用球坐标计算三重积分利用球坐标计算三重积分,R),(3zyxM设),(z其柱坐标为就称为点M 的球坐标.直角坐标与球面坐标的关系,ZOMMoxyzzr),(r则0200rcossinrx sinsinry cosrz 坐标面分别为常数r球面常数半平面常数锥面,rOM 令),(rMsinrcosrz xyzo如图所示,在球面坐标系中体积元素为ddrrddddsind2rrv 因此有zyxzyxfddd),(),(rF其中)cos,sinsin,cossin(),(rrrfrF适用范围适用范围:1)积分域积分域表面用球面坐标表示时方程简单方程简单;2)
9、被积函数被积函数用球面坐标表示时变量互相分离变量互相分离.dddsin2rrd例例5.计算三重积分,)(222zdydxdzyx22yxz为锥面2222Rzyx解解:在球面坐标系下:zyxzyxddd)(222所围立体.40Rr 020其中 与球面dddsind2rrv Rrr04d)22(515R40dsin20dxyzo4Rr 内容小结内容小结zyxdddzddddddsin2rr积分区域多由坐标面被积函数形式简洁,或坐标系 体积元素 适用情况直角坐标系柱面坐标系球面坐标系变量可分离.围成;zoxy21.设由锥面22yxz和球面4222zyx所围成,计算.d)(2vzyxI提示提示:4利用对称性vzyxd)(222vzxzyyxzyxId)222(222用球坐标 rr d420dsin4020d2215642.计算,ddd)sin5(2222zyxyxxyxI其中.4,1),(2122围成由zzyxz解解:zyxxIddd2利用对称性zyxyxddd)(2122yxyxzzDdd)(d212241zrrz2032041ddd21214zxoy1zDzyxyxyxdddsin52220