1、第二章 核磁共振氢谱l1.核磁共振的基本原理核磁共振的基本原理 l2.核磁共振仪与实验方法核磁共振仪与实验方法l3.氢的化学位移氢的化学位移l4.各类质子的化学位移各类质子的化学位移l5.自旋偶合和自旋裂分自旋偶合和自旋裂分l6.自旋系统及图谱分类自旋系统及图谱分类l7.核磁共振氢谱的解析核磁共振氢谱的解析1前言前言 过去50年,波谱学已全然改变了化学家、生物学家和生物医学家的日常工作,波谱技术成为探究大自然中分子内部秘密的最可靠、最有效的手段。NMR是其中应用最广泛研究分子性质的最通用的技术:从分子的三维结构到分子动力学、化学平衡、化学反应性和超分子集体、有机化学的各个领域。1945年 Pu
2、rcell(哈佛大学)和 Bloch(斯坦福大学)发现核磁共振现象,他们获得1952年Nobel物理奖 1951年 Arnold 发现乙醇的NMR信号,及与结构的关系 1953年 Varian公司试制了第一台NMR仪器 2NMR发展发展近二十多年发展近二十多年发展 高强超导磁场的NMR仪器,大大提高灵敏度和分辨率;脉冲傅立叶变换NMR谱仪,使灵敏度小的原子核能被测定;计算机技术的应用和多脉冲激发方法采用,产生二维谱,对判断化合物的空间结构起重大作用。l英国英国R.R.ErnstR.R.Ernst教授因对二维谱的贡献而获得教授因对二维谱的贡献而获得19911991年的年的NobelNobel奖。
3、奖。瑞士科学家库尔特瑞士科学家库尔特维特里希因维特里希因“发明了利用核磁共振技术测定溶液发明了利用核磁共振技术测定溶液中生物大分子三维结构的方法中生物大分子三维结构的方法”而获得而获得2002年诺贝尔化学奖。年诺贝尔化学奖。3o how many types of hydrogen?o how many of each type?o what types of hydrogen?o how are they connected?1H-NMR Target4NMR谱的结构信息 化学位移 偶合常数 积分高度5 让处于外磁场的自旋核接受一定频率的让处于外磁场的自旋核接受一定频率的电磁波辐射,而辐射的
4、能量又恰好等于高低电磁波辐射,而辐射的能量又恰好等于高低两种不同取向的能量差时,质子就吸收电磁两种不同取向的能量差时,质子就吸收电磁辐射,从低能态跃迁到高能态而产生共振现辐射,从低能态跃迁到高能态而产生共振现象,称为核磁共振(象,称为核磁共振(NMRNMR)。)。以吸收的能量的强度为纵坐标,以吸收以吸收的能量的强度为纵坐标,以吸收的频率为横坐标,用记录仪描绘下来,分子的频率为横坐标,用记录仪描绘下来,分子中各个核在核磁共振谱上即出现吸收峰,成中各个核在核磁共振谱上即出现吸收峰,成为核磁共振谱图。为核磁共振谱图。61.核磁共振的基本原理l原子核的磁矩原子核的磁矩 l自旋核在磁场中的取向和能级自旋
5、核在磁场中的取向和能级l核的回旋和核磁共振核的回旋和核磁共振l核的自旋弛豫核的自旋弛豫7l质量数与电荷数均为双数,如质量数与电荷数均为双数,如C12,O16,没有自,没有自旋现象。旋现象。I=0l质量数为单数,如质量数为单数,如H1,C13,N15,F19,P31。I为为半整数,半整数,1/2,3/2,5/2l质量数为双数,但电荷数为单数,如质量数为双数,但电荷数为单数,如H2,N14,I为为整数,整数,1,2lI为自旋量子数为自旋量子数原子核的自旋、磁矩原子核的自旋、磁矩8自旋角动量(PN),自旋量子数(I)I=0,1/2,1,3/2 磁矩(N*),核磁矩单位(N),核磁子;磁旋比(N)NN
6、NIIg)1(NNNP9自旋核在磁场中的取向和能级自旋核在磁场中的取向和能级l具有磁矩的核在外磁场中的自旋取向是量子化的,可用磁量子数m来表示核自旋不同的空间取向,其数值可取:m=I,I-1,I-2,-I,共有2I+1个取向。10 I=n/2 n=0,1,2,3-(取整数)(取整数)一些原子核有自旋现象,因而具有角动量,原子核是带电的粒子,在自旋的同时将产生磁矩,磁矩和角动量都是矢量,方向是平行的。哪些原子核有自旋现象?实践证明自旋量子数I与原子核的质量数A和原子序数Z:A Z I 自旋形状自旋形状 NMR信号信号 原子核原子核 偶数偶数 偶数偶数 0 无自旋现象无自旋现象 无无 12C,16
7、O,32S,28Si,30Si 奇数奇数 奇数或偶数奇数或偶数 1/2 自旋球体自旋球体 有有 1H,13C,15N,19F,31P 奇数奇数 奇数或偶数奇数或偶数 3/2,5/2,-自旋惰球体自旋惰球体 有有 11B,17O,33S,35Cl,79Br,127I 偶数偶数 奇数奇数 1,2,3,-自旋惰球体自旋惰球体 有有 2H,10B,14N11121314能级分裂能级分裂两种取向代表两个能级,m=-1/2能级高于m=1/2能级。002HHIENN15核的回旋和核磁共振核的回旋和核磁共振 当一个原子核的核磁矩处于磁场BO中,由于核自身的旋转,而外磁场又力求它取向于磁场方向,在这两种力的作用
8、下,核会在自旋的同时绕外磁场的方向进行回旋,这种运动称为Larmor进动。16原子核的进动在磁场中,原子核的自旋取向有2I+1个。各个取向由一个自旋量子数m表示。002HHN自旋角速度,外磁场H0,进动频率磁旋比:1H=26753,2H=410 7,13C=6726弧度/秒 高斯 1718共振条件共振条件 原子核在磁场中发生能级分裂,在磁场的垂直方向上加小交变电场,如频率为v v射射,当v v射射等于进动频率,发生共振。低能态原子核吸收交变电场的能量,跃迁到高能态,称核磁共振。19核磁共振的条件核磁共振的条件:E E=h vh v迴迴=h v h v射射=h h B BO O/2 /2 或或
9、v v射射=v v迴迴=B BO O/2/2 射频频率与磁场强度射频频率与磁场强度B Bo o是成正比的,在进行核磁共振是成正比的,在进行核磁共振实验时,所用的磁强强度越高,发生核磁共振所需的实验时,所用的磁强强度越高,发生核磁共振所需的射频频率也越高。射频频率也越高。20要满足核磁共振条件,可通过二种方法来实现要满足核磁共振条件,可通过二种方法来实现:频率扫描(扫频):固定磁场强度,改变射频频率 磁场扫描(扫场):固定射频频率,改变磁场强度 实际上多用后者。各种核的共振条件不同,如:在1.4092特斯拉的磁场,各种核的共振频率为:1H 60.000 MHZ 13C 15.086 MHZ 19
10、F 56.444 MHZ 31P 24.288 MHZ对于1H 核,不同的频率对应的磁场强度:射频 40 MHZ 磁场强度 0.9400 特斯拉 60 1.4092 100 2.3500 200 4.7000 300 7.1000 500 11.750021Boltzmann分布l在质子群中处于高低能态的核各有多少?l在绝对温度0度时,全部核处于低能态l在无磁场时,二种自旋取向的几率几乎相等l在磁场作用下,原子核自旋取向倾向取低能态,但室温时热能比原子核自旋取向能级差高几个数量级,热运动使这种倾向受破坏,当达到热平衡时,处于高低能态的核数的分布服从Boltzmann分布:n+/n-or Nl/
11、Nh=eE/KT 式中:n+-低能态的核数 n-高能态的核数 k-Boltzmann 常数 T-绝对温度 当T=27 C,磁场强度为1.0特斯拉时,高低能态的核数只差6.8ppm 磁场强度为1.4092时,高低能态的核数只差10ppm22核的自旋驰豫核的自旋驰豫l驰豫过程可分为两种类型:自旋驰豫过程可分为两种类型:自旋-晶格驰豫晶格驰豫和自旋和自旋-自旋驰豫。自旋驰豫。23驰豫过程驰豫过程:由激发态恢复到平衡态的过程由激发态恢复到平衡态的过程 l自旋晶格驰豫:核与环境进行能量交换。体系能量降低而逐渐趋于平衡。又称纵向驰豫。速率1/T1,T1为自旋晶格驰豫时间。l自旋自旋驰豫:自旋体系内部、核与
12、核之间能量平均及消散。又称横向驰豫。体系的能量不变,速率1/T2,T2为自旋自旋时间。l驰豫时间与谱线宽度的关系:即谱线宽度与驰豫时间成反比。l饱和:高能级的核不能回到低能级,则NMR信号消失的现象。24核磁共振仪分类:按磁场源分分类:按磁场源分:永久磁铁、电磁铁、超导磁场 按交变频率分按交变频率分:40,60,90,100,200,500,-,800 MHZ(兆赫兹),频率越高,分辨率越高 按射频源和扫描方式不同分按射频源和扫描方式不同分:连续波NMR谱仪(CW-NMR)脉冲傅立叶变换NMR谱仪(FT-NMR)NMR仪器的主要组成部件:仪器的主要组成部件:磁体:提供强而均匀的磁场 样品管:直
13、径4mm,长度15cm,质量均匀的玻璃管 射频振荡器:在垂直于主磁场方向提供一个射频波照射样品 扫描发生器:安装在磁极上的Helmholtz线圈,提供一个附加可 变磁场,用于扫描测定 射频接受器:用于探测NMR信号,此线圈与射频发生器、扫描 发生器三者彼此互相垂直。25PFT-NMR谱仪谱仪PFT-NMR谱仪与谱仪与CW谱仪主要区别:谱仪主要区别:信号观测系统,增加了脉冲程序器和数据采集、处理系统。各种核同时激发,发生共振,同时接受信号,得到宏观磁化强度的自由衰减信号(FID信号),通过计算机进行模数转换和FT变换运算,使FID时间函数变成频率函数,再经数模变换后,显示或记录下来,即得到通常的
14、NMR谱图。FT-NMR谱仪特点谱仪特点:有很强的累加信号的能力,信噪比高(600:1),灵敏度高,分辨率好(0.45Hz)。可用于测定1H,13C,15N,19F,31P等核的一维和二维谱。可用于少量样品的测定。262.核磁共振仪与实验方法按磁场源分:永久磁铁、电磁铁、超导磁按交变频率分:40兆,60兆,90兆,100兆,220兆,250兆,300兆赫兹频率越高,分辨率越高2728293031323334 让处于外磁场的自旋核接受一定频率的让处于外磁场的自旋核接受一定频率的电磁波辐射,而辐射的能量又恰好等于高低电磁波辐射,而辐射的能量又恰好等于高低两种不同取向的能量差时,质子就吸收电磁两种不
15、同取向的能量差时,质子就吸收电磁辐射,从低能态跃迁到高能态而产生共振现辐射,从低能态跃迁到高能态而产生共振现象,称为核磁共振(象,称为核磁共振(NMRNMR)。)。以吸收的能量的强度为纵坐标,以吸收以吸收的能量的强度为纵坐标,以吸收的频率为横坐标,用记录仪描绘下来,分子的频率为横坐标,用记录仪描绘下来,分子中各个核在核磁共振谱上即出现吸收峰,成中各个核在核磁共振谱上即出现吸收峰,成为为核磁共振谱图核磁共振谱图。35共振共振36交变频率与分辨率的关系37383940核磁共振波谱的测定l样品样品:纯度高,固体样品和粘度大液体样品必须溶解。l溶剂溶剂:氘代试剂(CDCl3,C6D6,CD3OD,CD
16、3COCD3,C5D5N)l标准标准:四甲基硅烷(CH3)4Si,缩写:TMS 优点:信号简单,且在高场,其他信号在低场,值为正值;沸点低(26。5 C),利于回收样品;易溶于有机溶剂;化学惰性 实验方法实验方法:内标法、外标法此外还有:六甲基二硅醚(HMDC,值为0.07ppm),4,4-二甲基-4-硅代戊磺酸钠(DSS,水溶性,作为极性化合物的内标,但三个CH2的 值为0.53.0ppm,对样品信号有影响)41NMR Lock Solvents Acetone CD3COCD3 Chloroform CDCl3 Dichloro Methane CD2Cl2 Methylnitrile C
17、D3CN Benzene C6D6 Water D2O Diethylether(DEE)(CD3CD2)2O Dimethylether(DME)(CD3)2O N,N-Dimethylformamide(DMF)(CD3)2NCDO Dimethyl Sulfoxide(DMSO)CD3SOCD3 Ethanol CD3CD2OD Methanol CD3OD Tetrehydrofuran(THF)C4D8O Toluene C6D5CD3 Pyridine C5D5N Cyclohexane C6H12 42常用溶剂的化学位移值溶剂溶剂 1H 13CCCl4 96.1CS2 192.8
18、CDCl37.2777.1(3)(CD3)2CO2.0530.3(7),207.3(CD3)2SO2.5039.5(7)D2O4.8(变化大与样品浓度及温度有关变化大与样品浓度及温度有关)苯苯d6(C6D6)7.20128.0(3)二氧六环二氧六环d63.5567.4CF3COOH12.5116.5(4),163.3(4)还己烷还己烷-d121.6326.3(7)吡啶吡啶-d56.98,7.35,8.501 4 9.3(3),1 2 3.5(3),135.5(3)CD3OH3.35 49.0(7)4344图图2-5 乙醚的氢核磁共振谱乙醚的氢核磁共振谱 453.氢的化学位移 l原子核由于所处的
19、化学环境不同,而在不同的共振磁场下显示吸收原子核由于所处的化学环境不同,而在不同的共振磁场下显示吸收峰的现象。峰的现象。46化学等价l分子中若有一组核,其化学位移严格相等,则这组核称为彼此化学等价的核。例如CH3CH2Cl中的甲基三个质子,它们的化学位移相等,为化学等价质子,同样亚甲基的二个质子也是化学等价的质子。47化学等价l处于相同化学环境的原子处于相同化学环境的原子 化学等价原子化学等价原子l化学等价的质子其化学位移相同,仅出现一组化学等价的质子其化学位移相同,仅出现一组NMR 信号。信号。l化学不等价的质子在化学不等价的质子在 NMR 谱中出现不同的信号组。谱中出现不同的信号组。48化
20、学等价质子与化学不等价质子的判断l -可通过对称操作或快速机制(如构象转换)互可通过对称操作或快速机制(如构象转换)互换的质子是化学等价的。换的质子是化学等价的。l -不可通过对称操作或快速机制(构象转换)互不可通过对称操作或快速机制(构象转换)互换的质子是化学不等价的。换的质子是化学不等价的。l -与手性碳原子相连的与手性碳原子相连的 CH2 上的两个质子是化学上的两个质子是化学不等价的。不等价的。对称操作对称操作对称轴旋转对称轴旋转其他对称操作其他对称操作(如对称面)(如对称面)等位质子等位质子化学等价质子化学等价质子对映异位质子对映异位质子非手性环境为化学等价非手性环境为化学等价手性环境
21、为化学不等价手性环境为化学不等价49CCHaHbClClCHaHbClClOH3CCH3H3CClHbClCH3HaCHaHbBrClOHbBrHaBrHaCH3CH3HbH3CClHbBrCH3HaCCHaHbClHcH3C CCH3CH3OCH3ababNO2HaHbHcHbHaCHCClH3CCH3HaHbABCDEFGHIJKL化学等价质子与化学不等价质子的判断化学等价质子与化学不等价质子的判断50化学等价质子与化学不等价质子的判断51磁等价l分子中若有一组核,它们对组外任何一个核都表现出相同大小的偶合作用,即只表现出一种偶合常数,则这组核称为彼此磁等价的核。例如:CH2F2中二个氢和
22、二个氟任何一个偶合都是相同的,所以二个氢是磁等价的核,二个氟也是磁等价的核。52质子与质子之间的关系质子与质子之间的关系化学等价核:同一分子中化学位移相同的质子。化学等价质子具有相同化学等价核:同一分子中化学位移相同的质子。化学等价质子具有相同 的化学环境。的化学环境。磁等价核:如果有一组化学等价质子,当它与组外的任一磁核偶合时,磁等价核:如果有一组化学等价质子,当它与组外的任一磁核偶合时,其偶合常数相等,该组质子称为磁等价质子。其偶合常数相等,该组质子称为磁等价质子。#1 CH3CH2X中中CH3上的三个质子是化学等价的,也是磁等价的;上的三个质子是化学等价的,也是磁等价的;#2 二氟乙烯中
23、二氟乙烯中Ha和和Hb是化学等价的,但因是化学等价的,但因JHF(顺式顺式)JHF(反式反式),所以,所以Ha和和Hb不是不是 磁等价质子;磁等价质子;#3 对对-硝基氟苯中,硝基氟苯中,Ha与与Hb为化学等价,但不是磁等价(为化学等价,但不是磁等价(3Jac 5Jbc)。)。注意:化学等价,不一定磁等价,但磁等价的一定是化学等价的。注意:化学等价,不一定磁等价,但磁等价的一定是化学等价的。CCHaHbFaFbNO2HbHaHcFHd53屏蔽效应屏蔽效应 化学位移的根源化学位移的根源 磁场中所有自旋核产生感应磁场,方向与外加磁场相反或相同,使原子核的实受磁场降低或升高,即屏蔽效应。H核=HO(
24、1-)其中H核表示氢核实际所受的磁场,为屏蔽常数分类:顺磁屏蔽,抗磁屏蔽5455化学位移的表示:单位ppm 标准:四甲基硅(标准:四甲基硅(TMS),),=0,(如以(如以表示,表示,TMS=10,=10-)661010标准样品标准标准HHHHH661010标准样品标准标准56低场向左磁场强度向右高场57影响化学位移的因素l诱导效应l共轭效应l各向异性效应lVan der Waals效应l氢键效应和溶剂效应58 诱导效应:氢原子核外成键电子的电子云密度产生的屏蔽效应。拉电子基团:去屏蔽效应,化学位移左移,即增大拉电子基团:去屏蔽效应,化学位移左移,即增大推电子基团:屏蔽效应,化学位移右移,即减
25、小推电子基团:屏蔽效应,化学位移右移,即减小59 /ppm 试比较下面化合物分子中试比较下面化合物分子中 Ha Hb Hc 值的大小。值的大小。b a c 电负性较大的原子,可减小电负性较大的原子,可减小H原子受到的屏蔽作用,引起原子受到的屏蔽作用,引起 H原子向低场移动。向低场移动的程度正比于原子的电负原子向低场移动。向低场移动的程度正比于原子的电负 性和该原子与性和该原子与H之间的距离。之间的距离。CH3F CH3OH CH3Cl CH3Br CH3I CH3-H 4.26 3.40 3.05 2.68 2.16 0.23 CH3CH2CH2Brc b a Ha 3.30 Hb 1.69
26、Hc 1.25 /ppmCH3-O-CH2-C-CH3CH3Cla b c 606162由于邻对位氧原子的存由于邻对位氧原子的存在,右图中双氢黄酮的在,右图中双氢黄酮的芳环氢芳环氢ab的化学位移为的化学位移为6.15ppm通常芳环氢化通常芳环氢化学位移大于学位移大于7ppm。63共轭效应共轭效应64HaOCH3HbOCH3Ha1Ha2HbCOCH3OA B C7.27 6.73 7.81HHOHHC=OH65各向异性效应l芳环芳环 l叁键叁键 l羰基羰基 l双键双键 l单键单键 l在分子中处于某一化学键的不同空间位置上的核受到不同的屏蔽在分子中处于某一化学键的不同空间位置上的核受到不同的屏蔽作
27、用作用,这种现象称为各向异性效应这种现象称为各向异性效应,这是因为由电子构成的化学键这是因为由电子构成的化学键在外磁场的作用下在外磁场的作用下,产生一个各向异性的附加磁场产生一个各向异性的附加磁场,使得某些位置使得某些位置的核受到屏蔽的核受到屏蔽,而另一些位置上的核则为去屏蔽而另一些位置上的核则为去屏蔽.和和 键碳原子相连的键碳原子相连的H,其所受屏蔽作用小于烷基碳原子,其所受屏蔽作用小于烷基碳原子 相连的相连的H原子。原子。值顺序:值顺序:CO A rHH HCC HCC HC66芳环芳环环的上下方为屏蔽区,其它地方为去屏蔽区环的上下方为屏蔽区,其它地方为去屏蔽区 67叁键叁键 :键轴向为屏
28、蔽区,其它为去屏蔽区。键轴向为屏蔽区,其它为去屏蔽区。68羰基羰基平面上下各有一个锥形的屏蔽区,其它方向(尤其是平平面上下各有一个锥形的屏蔽区,其它方向(尤其是平面内)为去屏蔽区。面内)为去屏蔽区。RCOH HCCH 9-10 1.869双键双键 CH3CH3 CH2=CH20.96 5.2570A =1.27,=0.85 B =1.23,=0.72 C =1.17,=1.0171单键单键 72Van der Waals效应 当两个质子在空间结构上非常靠近时,具有当两个质子在空间结构上非常靠近时,具有负电荷的电子云就会互相排斥,从而使这些质负电荷的电子云就会互相排斥,从而使这些质子周围的电子云
29、密度减少,屏蔽作用下降,共子周围的电子云密度减少,屏蔽作用下降,共振信号向低磁场位移,这种效应称为振信号向低磁场位移,这种效应称为Van der Waals效应。效应。73空间效应 Ha=3.92 Hb=3.55 Hc=0.88 Ha=4.68 Hb=2.40 Hc=1.10去屏蔽效应去屏蔽效应74氢键与化学位移:绝大多数氢键形成后,质子化学位绝大多数氢键形成后,质子化学位移移向低场。表现出相当大的去屏蔽效应移移向低场。表现出相当大的去屏蔽效应.提高温度和降低浓度都提高温度和降低浓度都可以破坏氢键可以破坏氢键.如下面化合物4个羟基的均可以形成氢键,按照氢键由弱到强的顺序,逐步增大。75 分子内
30、氢键,其化学位移变化与溶液浓度无关,取决于分子内氢键,其化学位移变化与溶液浓度无关,取决于分子分子 本身结构。本身结构。OHORRRCOCH2CORRCCHOHCOR1116 ppm76乙醇的羟基随浓度增加,分子间氢键增强,化学位移增大 77溶剂效应:溶剂不同使化学位移改变的效应溶剂不同使化学位移改变的效应 溶剂效应的产生是由于溶剂的磁各向异性造成或者是由于不同溶剂溶剂效应的产生是由于溶剂的磁各向异性造成或者是由于不同溶剂极性不同极性不同,与溶质形成氢键的强弱不同引起的与溶质形成氢键的强弱不同引起的.784 各类质子的化学位移值各类质子的化学位移值79各类质子的化学位移值范围 13 12 11
31、 10 9 8 7 6 5 4 3 2 1 0 RCH2-O=C-CH2-C=C-CH2-CCCH2-CH2-CH2-X-CH2-O-CH2-NO2C=C-HAr-HRCHORCOOH804.1 饱和碳上质子的化学位移饱和碳上质子的化学位移 甲基在核磁共振氢谱中,甲基的吸收峰比较特征,容易辨认。一般根据邻接的基团不同,甲基的化学位移在0.74ppm之间.81亚甲基和次甲基一般亚甲基和次甲基的吸收峰不象甲基峰那样特征和明显,往往呈现很多复杂的峰形,有时甚至和别的峰相重迭,不易辨认。亚甲基(-CH2-)的化学位移可以用Shoolery经验公式加以计算:=0.23+式中常数0.23是甲烷的化学位移值
32、,是与亚甲基相连的取代基的屏蔽常数 824.2.不饱和碳上质子的化学位移不饱和碳上质子的化学位移 炔氢叁键的各向异性屏蔽作用,使炔氢的化学位移出现在1.6 3.4ppm范围内.83烯氢烯氢烯氢的化学位移可用Tobey和Simon等人提出的经验公式来计算:=5.25+Z同+Z顺+Z反 式中常数5.25是乙烯的化学位移值,Z是同碳、顺式及反式取代基对烯氢化学位移的影响参数。84芳环氢的化学位移值芳环氢的化学位移值芳环的各向异性效应使芳环氢受到去屏蔽影响,其化学位移在较低场。苯的化学位移为7.27ppm。当苯环上的氢被取代后,取代基的诱导作用又会使苯环的邻、间、对位的电子云密度发生变化,使其化学位移
33、向高场或低场移动。芳环氢的化学位移可按下式进行计算;=7.27+Si 式中常数7.27是苯的化学位移,Si为取代基对芳环氢的影响.85 杂环芳氢的的化学位移值杂环芳氢的化学位移受溶剂的影响较大。一般杂环芳氢的化学位移受溶剂的影响较大。一般位的杂芳氢的位的杂芳氢的吸收峰在较低场吸收峰在较低场 ONHSNNHN6.307.406.226.687.047.297.757.388.296.477.298.047.519.10呋喃吡咯噻吩吡啶吲哚喹啉(CDCl3)(CDCl3)(CDCl3)(DMSO)(DMSO)(DMSO)86 活泼氢的化学位移值常见的活泼氢,如常见的活泼氢,如-OH、-NH-、-S
34、H、-COOH等基团的质子,在溶剂中交换很快,等基团的质子,在溶剂中交换很快,并受测定条件如浓度、温度、溶剂的影响,并受测定条件如浓度、温度、溶剂的影响,值不值不 固定在某一数值上,而在一个固定在某一数值上,而在一个较宽的范围内变化(表较宽的范围内变化(表3-9)。活泼氢的峰形有一定特征,一般而言,酰胺、羧)。活泼氢的峰形有一定特征,一般而言,酰胺、羧酸类缔合峰为宽峰,醇、酚类的峰形较钝,氨基,巯基的峰形较尖。用重水交酸类缔合峰为宽峰,醇、酚类的峰形较钝,氨基,巯基的峰形较尖。用重水交换法可以鉴别出活泼氢的吸收峰,(加入重水后活泼氢的吸收峰消失)。换法可以鉴别出活泼氢的吸收峰,(加入重水后活泼
35、氢的吸收峰消失)。活泼氢的化学位移活泼氢的化学位移化合物类型化合物类型(ppmppm)化合物类型化合物类型 (ppmppm)ROH0.55.5RSO3H 1.11.2ArOH(缔合缔合)10.516RNH2,R2NH 0.43.5ArOH48ArNH2,Ar2NH 2.94.8RCOOH1013RCONH2,ArCONH2 56.5=NH-OH7.410.2RCONHR,ArCONHR 68.2R-SH0.92.5RCONHAr,7.89.4=C=CHOH(缔合缔合)1519 ArCONHAr 7.89.4875 自旋偶合和自旋裂分自旋偶合和自旋裂分5.1 自旋自旋-自旋偶合与自旋自旋裂分自旋
36、偶合与自旋自旋裂分 5.2 n+1规律规律5.3 偶合常数偶合常数88自旋核的核磁矩可以通过成键电子影响邻近磁核是引起自旋自旋偶合的根本自旋核的核磁矩可以通过成键电子影响邻近磁核是引起自旋自旋偶合的根本原因。磁性核在磁场中有不同的取向,产生不同的局部磁场,从而加强或减弱原因。磁性核在磁场中有不同的取向,产生不同的局部磁场,从而加强或减弱外磁场的作用,使其周围的磁核感受到两种或数种不同强度的磁场的作用,故外磁场的作用,使其周围的磁核感受到两种或数种不同强度的磁场的作用,故在两个或数个不同的位置上产生共振吸收峰。这种由于自旋在两个或数个不同的位置上产生共振吸收峰。这种由于自旋-自旋偶合引起谱峰自旋
37、偶合引起谱峰裂分的现象称为自旋裂分的现象称为自旋-自旋裂分(自旋裂分(Spin-Spin Splitting)。)。89n+1规律:当某组质子有当某组质子有n个相邻的质子时,这组质子的吸收峰将裂分成个相邻的质子时,这组质子的吸收峰将裂分成n+1重峰。重峰。n数 二项式展开式系数 峰形0 1 单峰111 二重峰21 2 1 三重峰3 1 3 3 1 四重峰4 1 4 6 4 1 五重峰5 1 5 10 10 5 1 六重峰90严格来说严格来说,n+1规律应该是规律应该是2nI+1规律规律,对氢原子核对氢原子核(H1)来来说说,因它的因它的I=1/2,所以就变成了规律所以就变成了规律.91n+1规
38、律只适合于互相偶合的质子的化学位移差远大于偶合常数,即vJ时的一级光谱。而且在实际谱图中互相偶合的二组峰强度还会出现内侧高,外侧低的情况,称为向心规则。利用向心规则,可以找到吸收峰间互相偶合的关系。925.3 偶合常数 l偶合常数(用J表示)也是核磁共振谱的重要数据,它与化合物的分子结构关系密切。偶合常数的大小与外磁场强度无关。由于磁核间的偶合作用是通过化学键成键电子传递的,因而偶合常数的大小主要与互相偶合的二个磁核间的化学键的数目及影响它们之间电子云分布的因素(如单键、双键、取代基的电负性、立体化学等)有关。l偶合常数,单位为赫(Hz)l对于氢谱,根据偶合质子间相隔化学键的数目可分为同碳偶合
39、(2J),邻碳偶合(3J)和远程偶合(相隔4个以上的化学键)。一般通过双数键的偶合常数(2J,4J等)为负值,通过单数键的偶合常数(3J,5J等)为正值。939495969798同碳质子的偶合常数(2J,J同)以以2J或或J同表示,同表示,2J一般为负值,但变化范围较大一般为负值,但变化范围较大 影响影响2J的因素主要有:的因素主要有:取代基电负性会使取代基电负性会使2J的绝对值减少,即向正的方向变化。的绝对值减少,即向正的方向变化。对于脂环化合物,环上同碳质子的对于脂环化合物,环上同碳质子的2J值会随键角的增加而减小,值会随键角的增加而减小,即向负的方向变化。烯类化合物末端双键质子的即向负的
40、方向变化。烯类化合物末端双键质子的2J一般在一般在+3-3Hz 之间,邻位电负性取代基会使之间,邻位电负性取代基会使2J向负的方向变化向负的方向变化.99邻碳质子的偶合常数(3J,J邻)l饱和型邻位偶合常数;l烯型邻位偶合常数100饱和型邻位偶合常数l在饱和化合物中,通过三个单键(H-C-C-H)的偶合叫饱和型邻位偶合。开链脂肪族化合物由于键自由旋转的平均化,使3J数值约为7Hz。3J的大小与双面夹角、取代基电负性、环系因素有关。101烯型邻位偶合常数l烯氢的邻位偶合是通过二个单键和一个双键(H-C=C-H)发生作用的。由于双键的存在,反式结构的双面夹角为180o,顺式结构的双面夹角为0o,因
41、此J反大于J顺.102芳氢的偶合常数芳环氢的偶合可分为邻、间、对位三种偶合,偶合常数都为正值,l邻位偶合常数比较大,一般为6.09.4 Hz(三键),l间位为0.83.1Hz(四键),l对位小于0.59Hz(五键)。l一般情况下,对位偶合不易表现出来。苯环氢被取代后,特别是强拉电子或强推电子基团的取代,使苯环电子云分布发生变化,表现出J邻、J间和J对的偶合,使苯环质子吸收峰变成复杂的多重峰。103远程偶合l超过三个键的偶合称为远程偶合(long-range coupling),如芳烃的间位偶合和对位偶合都属于远程偶合。远程偶合的偶合常数都比较小,一般在03Hz之间。常见的远程偶合有下列几种情况
42、:丙烯型偶合高丙烯偶合 炔及迭烯 折线性偶合 W型偶合 104质子与其他核的偶合l质子与其它磁性核如13C、19F、31P的偶合 105106l自旋裂分和偶合常数自旋裂分和偶合常数 原子核之间的相互作用称为自旋原子核之间的相互作用称为自旋自自旋偶合,简称自旋偶合。因自旋偶合而引旋偶合,简称自旋偶合。因自旋偶合而引起的谱线增多的现象称为自旋起的谱线增多的现象称为自旋自旋裂分,自旋裂分,简称自旋裂分。简称自旋裂分。产生的原因在于磁场的作用下,自旋产生的原因在于磁场的作用下,自旋的质子会产生一个小的磁矩,通过成键价的质子会产生一个小的磁矩,通过成键价电子的传递,对邻近的质子产生影响。自电子的传递,对
43、邻近的质子产生影响。自旋若有两种取向,就分裂成两个信号。旋若有两种取向,就分裂成两个信号。107l 自旋偶合的量度称为自旋的偶合常数,自旋偶合的量度称为自旋的偶合常数,用用 J J 表示。表示。J J的大小表示了偶合作用的强弱,的大小表示了偶合作用的强弱,左上方常标以数字,表示两个偶合核之间左上方常标以数字,表示两个偶合核之间相隔键的数目,右下方标以其他的情报。相隔键的数目,右下方标以其他的情报。l 就其本质而言,偶合常数是质子自旋就其本质而言,偶合常数是质子自旋裂分时的两个核磁共振能之差,它可以通裂分时的两个核磁共振能之差,它可以通过共振吸收的位置差别来体现,在图谱上过共振吸收的位置差别来体
44、现,在图谱上就是裂分峰之间的距离。就是裂分峰之间的距离。108裂分裂分109l积分曲线和峰面积积分曲线和峰面积 核磁共振谱中,共振峰下面的面积与核磁共振谱中,共振峰下面的面积与产生峰的质子数产生峰的质子数chen正比。,因此峰面积正比。,因此峰面积比即为不同类型质子数目的相对比值,可比即为不同类型质子数目的相对比值,可以通过整个分子的质子数,及峰面积的比以通过整个分子的质子数,及峰面积的比例关系算出各组化学位移等价质子的具体例关系算出各组化学位移等价质子的具体数目。核磁共振仪用电子积分仪来测量峰数目。核磁共振仪用电子积分仪来测量峰的面积。的面积。110利用积分曲线求峰面积利用积分曲线求峰面积1
45、11谱图的分析 用记录仪描绘下来,分子中各个氢核在用记录仪描绘下来,分子中各个氢核在核磁共振谱上出现的吸收峰,图中峰的相对核磁共振谱上出现的吸收峰,图中峰的相对位置反映出质子环境的差别,给出了分子结位置反映出质子环境的差别,给出了分子结构的极为详细的信息:构的极为详细的信息:l 1 1、信号数目、信号数目:表明分子中有几种类型的等性表明分子中有几种类型的等性氢;氢;l 2 2、信号位置、信号位置:表明每种类型的质子所处的电表明每种类型的质子所处的电子环境;子环境;l 3 3、信号强度、信号强度:通过峰面积表明质子数;通过峰面积表明质子数;l 4 4、信号裂分、信号裂分:表明一个质子相对于其他邻
46、近表明一个质子相对于其他邻近原子的环境有关情况。原子的环境有关情况。112113l1 1、标识杂质峰、标识杂质峰 最常见的是溶剂峰,旋转边峰和最常见的是溶剂峰,旋转边峰和1313C C边峰。边峰。l2 2、根据积分曲线计算各组峰的相应质子数。、根据积分曲线计算各组峰的相应质子数。l3 3、根据峰的化学位移确定它们的归属。、根据峰的化学位移确定它们的归属。l4 4、根据峰的形状和偶合常数确定基团之间、根据峰的形状和偶合常数确定基团之间的相互关系。(的相互关系。(N+1N+1规律)规律)l5 5、采用重水交换法识别活泼氢。、采用重水交换法识别活泼氢。l6 6、综合各种分析,推断分子结构并对结论、综
47、合各种分析,推断分子结构并对结论进行核对。进行核对。步步骤骤114 第一种影响因素第一种影响因素1156 自旋系统及图谱分类 l核的等价性质核的等价性质 化学等价:磁等价 快速机制l自旋系统的分类 l图谱的分类l几种常见的自旋系统116 化学等价和磁等价化学等价和磁等价化学等价:化学位移严格相等的核称为化学等价核,指化学化学等价:化学位移严格相等的核称为化学等价核,指化学位移相同的原子核。位移相同的原子核。磁等价:一组核对组外任何核表现出相同大小的偶合作用,磁等价:一组核对组外任何核表现出相同大小的偶合作用,即只表现出一个偶合常数,着组核称为磁等价核。即只表现出一个偶合常数,着组核称为磁等价核
48、。磁全同:既化学等价又磁等价的磁全同:既化学等价又磁等价的原子核,称为原子核,称为磁全同磁全同磁全同磁全同核核 。117118119120121自旋系统的分类自旋系统的分类l自旋系统的定义 把几个互相偶合的核,按偶合作用的强弱,分成不同的自旋系统,系统内部的核互相偶合,但不和系统外的任何核相互作用。系统与系统之间是隔离的.COOCH2CH3H3C122磁不等价的情况1.单键带有双键性时会产生不等价质子,R-CO-N(CH2CH3)2,2个CH2 会出现2组四重峰,2个CH3会出现复杂的多重峰(2组三重峰的重叠)2.双键同碳质子具有不等价性 H2C=CHR 3.单键不能自由旋转时,也会产生不等价
49、质子,BrCH2CH(CH3)2 有三种构象,室温下C-C快速旋转,CH2上2个质子是等价的,但在低温下C-C不能快速旋转,CH2上2个质子所处的环境有差别而成为不等价质子。4.与不对称碳相连的CH2,2个质子是不等价的 5.固定在环上的CH2,2个质子是不等价,甾体环 6.苯环上化学环境相同的质子可能磁不等价123自旋系统的命名 l 分子中两组相互干扰的核,它们之间的化学位移差小于或近似于偶合常数J时,则这些化学位移近似的核分别以A、B、C字母表示。若其中某种类的磁全同的核有几个,则在核字母的右下方用阿拉伯字母写上标记,如Cl-CH2-CH2-COOH中间二个CH2构成A2B2系统。l分子中
50、两组互相干扰的核,它们的化学位移差远大于它们之间的偶合常数(J),则其中一组用A、B、C表示,另一组用x、y、z表示。l若核组内的核为磁不等价时,则用A、A、B、B加以区别。124图谱的分类l核磁共振图谱可分为一级谱图和二级图谱,或称为初级图谱和高级图谱。一级图谱:一级图谱:条件:条件:/J 6 组内各个质子均为磁全同核组内各个质子均为磁全同核特点:特点:1。磁全同质子之间,虽然。磁全同质子之间,虽然 J 0,但对图谱不发生影响,但对图谱不发生影响 Cl-CH2CH2Cl 只表现出一个峰只表现出一个峰 2。裂分后峰的数目。裂分后峰的数目,符合符合n+1规律(对于规律(对于I=1/2的核的核)3