3.2 第2课时导数与函数的极值、最值.docx

上传人(卖家):和和062 文档编号:357216 上传时间:2020-03-11 格式:DOCX 页数:15 大小:299.22KB
下载 相关 举报
3.2 第2课时导数与函数的极值、最值.docx_第1页
第1页 / 共15页
3.2 第2课时导数与函数的极值、最值.docx_第2页
第2页 / 共15页
3.2 第2课时导数与函数的极值、最值.docx_第3页
第3页 / 共15页
3.2 第2课时导数与函数的极值、最值.docx_第4页
第4页 / 共15页
3.2 第2课时导数与函数的极值、最值.docx_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、第2课时导数与函数的极值、最值题型一用导数解决函数极值问题命题点1根据函数图象判断极值例1(1)(2016青岛模拟)设f(x)是函数f(x)的导函数,yf(x)的图象如图所示,则yf(x)的图象最有可能是()(2)设函数f(x)在R上可导,其导函数为f(x),且函数y(1x)f(x)的图象如图所示,则下列结论中一定成立的是()A函数f(x)有极大值f(2)和极小值f(1)B函数f(x)有极大值f(2)和极小值f(1)C函数f(x)有极大值f(2)和极小值f(2)D函数f(x)有极大值f(2)和极小值f(2)答案(1)C(2)D解析(1)由f(x)图象可知,x0是函数f(x)的极大值点,x2是f

2、(x)的极小值点,故选C.(2)由题图可知,当x0;当2x1时,f(x)0;当1x2时,f(x)2时,f(x)0.由此可以得到函数f(x)在x2处取得极大值,在x2处取得极小值命题点2求函数的极值例2(2017泉州质检)已知函数f(x)x1(aR,e为自然对数的底数)(1)若曲线yf(x)在点(1,f(1)处的切线平行于x轴,求a的值;(2)求函数f(x)的极值解(1)由f(x)x1,得f(x)1.又曲线yf(x)在点(1,f(1)处的切线平行于x轴,得f(1)0,即10,解得ae.(2)f(x)1,当a0时,f(x)0,f(x)为(,)上的增函数,所以函数f(x)无极值当a0时,令f(x)0

3、,得exa,即xln a,当x(,ln a)时,f(x)0,所以f(x)在(,ln a)上单调递减,在(ln a,)上单调递增,故f(x)在xln a处取得极小值且极小值为f(ln a)ln a,无极大值综上,当a0时,函数f(x)无极值;当a0时,f(x)在xln a处取得极小值ln a,无极大值命题点3已知极值求参数例3(1)(2016广州模拟)已知f(x)x33ax2bxa2在x1时有极值0,则ab_.(2)(2017福州质检)若函数f(x)x2x1在区间(,3)上有极值点,则实数a的取值范围是()A(2,) B2,)C(2,) D2,)答案(1)7(2)C解析(1)由题意得f(x)3x

4、26axb,则解得或经检验当a1,b3时,函数f(x)在x1处无法取得极值,而a2,b9满足题意,故ab7.(2)若函数f(x)在区间(,3)上无极值,则当x(,3)时,f(x)x2ax10恒成立或当x(,3)时,f(x)x2ax10恒成立当x(,3)时,yx的值域是2,);当x(,3)时,f(x)x2ax10,即ax恒成立,a2;当x(,3)时,f(x)x2ax10,即ax恒成立,a.因此要使函数f(x)在(,3)上有极值点,实数a的取值范围是(2,)思维升华(1)求函数f(x)极值的步骤确定函数的定义域;求导数f(x);解方程f(x)0,求出函数定义域内的所有根;列表检验f(x)在f(x)

5、0的根x0左右两侧值的符号,如果左正右负,那么f(x)在x0处取极大值,如果左负右正,那么f(x)在x0处取极小值(2)若函数yf(x)在区间(a,b)内有极值,那么yf(x)在(a,b)内绝不是单调函数,即在某区间上单调函数没有极值(1)函数f(x)(x21)22的极值点是()Ax1 Bx1Cx1或1或0 Dx0(2)函数y2x的极大值是_答案(1)C(2)3解析(1)f(x)x42x23,由f(x)4x34x4x(x1)(x1)0,得x0或x1或x1.又当x1时,f(x)0,当1x0.当0x1时,f(x)1时,f(x)0,x0,1,1都是f(x)的极值点(2)y2,令y0,得x1.当x0时

6、,y0;当1x0时,y0,f(x)在区间(0,e上单调递增,此时函数f(x)无最小值若0ae,则当x(0,a)时,f(x)0,函数f(x)在区间(a,e上单调递增,所以当xa时,函数f(x)取得最小值ln a.若ae,则当x(0,e时,f(x)0,函数f(x)在区间(0,e上单调递减,所以当xe时,函数f(x)取得最小值.综上可知,当a0时,函数f(x)在区间(0,e上无最小值;当0aa,则实数a的取值范围是_答案(,)解析由题意知,f(x)3x2x2,令f(x)0,得3x2x20,解得x1或x,又f(1),f(),f(1),f(2)7,故f(x)min,a0)的导函数yf(x)的两个零点为3

7、和0.(1)求f(x)的单调区间;(2)若f(x)的极小值为e3,求f(x)在区间5,)上的最大值解(1)f(x).令g(x)ax2(2ab)xbc,因为ex0,所以yf(x)的零点就是g(x)ax2(2ab)xbc的零点且f(x)与g(x)符号相同又因为a0,所以当3x0,即f(x)0,当x0时,g(x)0,即f(x)5f(0),所以函数f(x)在区间5,)上的最大值是5e5.思维升华求一个函数在闭区间上的最值和在无穷区间(或开区间)上的最值时,方法是不同的求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观

8、察得到函数的最值若函数f(x)x3x2在区间(a,a5)上存在最小值,则实数a的取值范围是()A5,0) B(5,0)C3,0) D(3,0)答案C解析由题意,得f(x)x22xx(x2),故f(x)在(,2),(0,)上是增函数,在(2,0)上是减函数,作出其图象如图所示,令x3x2得,x0或x3,则结合图象可知,解得a3,0)3利用导数求函数的最值典例(12分)已知函数f(x)ln xax(aR)(1)求函数f(x)的单调区间;(2)当a0时,求函数f(x)在1,2上的最小值思维点拨(1)已知函数解析式求单调区间,实质上是求f(x)0,f(x)0),当a0时,f(x)a0,即函数f(x)的

9、单调递增区间为(0,)2分当a0时,令f(x)a0,可得x,当0x0;当x时,f(x)0时,函数f(x)的单调递增区间为,单调递减区间为.5分(2)当1,即a1时,函数f(x)在区间1,2上是减函数,所以f(x)的最小值是f(2)ln 22a.6分当2,即0a时,函数f(x)在区间1,2上是增函数,所以f(x)的最小值是f(1)a.7分当12,即a1时,函数f(x)在上是增函数,在上是减函数又f(2)f(1)ln 2a,所以当aln 2时,最小值是f(1)a;当ln 2a1时,最小值为f(2)ln 22a.11分综上可知,当0a0,则f(x)单调递增;当x(2,2)时,f(x)0.令f(x)0

10、,得x1.令f(x)0,得0x0,即a23a180.a6或a0时,f(x)()A有极大值,无极小值B有极小值,无极大值C既有极大值又有极小值D既无极大值也无极小值答案D解析由题意知x2f(x),令g(x)x2f(x),则g(x)且f(x),因此f(x).令h(x)ex2g(x), 则h(x)ex2g(x)ex,所以当x2时,h(x)0;当0x2时,h(x)0时,f(x)是单调递增的,故f(x)既无极大值也无极小值6(2016宜昌模拟)已知yf(x)是奇函数,当x(0,2)时,f(x)ln xax(a),当x(2,0)时,f(x)的最小值为1,则a的值等于()A. B. C. D1答案D解析由题

11、意知,当x(0,2)时,f(x)的最大值为1.令f(x)a0,得x,当0x0;当x时,f(x)0)的极大值是正数,极小值是负数,则a的取值范围是_答案(,)解析f(x)3x23a23(xa)(xa),由f(x)0得xa,当axa时,f(x)a或x0,函数递增f(a)a33a3a0且f(a)a33a3a.a的取值范围是(,)9(2016荆州模拟)已知函数f(x)x3x2xm在0,1上的最小值为,则实数m的值为_答案2解析由f(x)x3x2xm,可得f(x)x22x1,令x22x10,可得x1.当x(1,1)时,f(x)0),f(x)x5.令f(x)0,解得x2或3.当0x3时,f(x)0,故f(

12、x)在(0,2),(3,)上为增函数;当2x3时,f(x)0),若函数f(x)在x1处与直线y相切(1)求实数a,b的值;(2)求函数f(x)在,e上的最大值解(1)f(x)2bx,函数f(x)在x1处与直线y相切,解得(2)由(1)知,f(x)ln xx2,f(x)x,当xe时,令f(x)0,得x1,令f(x)0,得10,bR)(1)设a1,b1,求f(x)的单调区间;(2)若对任意的x0,f(x)f(1),试比较ln a与2b的大小解(1)由f(x)ax2bxln x,x(0,),得f(x).a1,b1,f(x)(x0)令f(x)0,得x1.当0x1时,f(x)1时,f(x)0,f(x)单调递增f(x)的单调递减区间是(0,1);单调递增区间是(1,)(2)由题意可知,f(x)在x1处取得最小值,即x1是f(x)的极值点,f(1)0,2ab1,即b12a.令g(x)24xln x(x0),则g(x).令g(x)0,得x.当0x0,g(x)单调递增,当x时,g(x)0,g(x)单调递减,g(x)g()1ln 1ln 40,g(a)0,即24aln a2bln a0,故ln a2b.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中 > 数学 > 高考专区 > 一轮复习
版权提示 | 免责声明

1,本文(3.2 第2课时导数与函数的极值、最值.docx)为本站会员(和和062)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|