1、数学:3.2 解一元一次方程(2)学案(人教版七年级上)合并同类项与移项 【学习目标】:运用方程解决实际问题,会用移项法则解方程; 【学习重点】:运用方程解决实际问题,会用移项法则解方程; 【学习难点】:理解“移项法则”的依据,以及寻找问题中的等量关系; 【导学指导】 一、知识链接 解方程:(1)3x-2x=7; (2)x+x=3; 二、自主探究 1. 问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生? 分析:设这个班有x名学生,根据第一种分法,分析已知量和未知量间的关系; (1)每人分3本,那么共分出_本;共分出3x本和剩余的2
2、0本,可知道这批书共有_本; 根据第二种分法,分析已知量与未知量之间的关系 (2)每人分4本,那么需要分出_本;需要分出4x本和还缺少25本那么这批书共有_本; 这批书的总数是一个定值(不变量),表示它的两个式子应相等; 根据这一相等关系,列方程: _;本题还可以画示意图,帮助我们分析: 注意变化中的不变量,寻找隐含的相等关系,从本题列方程的过程,可以发现:“表示同一个量的两个不同式子相等” 分析:方程3x+20=4x-25的两边都含有x的项(3x与4x),也都含有不含字母的常数项(20与-25)怎样才能使它转化为x=a(常数)的形式呢? 要使方程右边不含x的项,根据等式性质1,两边都减去4x
3、,同样,把方程两边都减去20,方程左边就不含常数项20,即 3x+20 -4x-20 =4x-25 -4x-20 即 3x-4x=-25-20 将它与原来方程比较,相当于把原方程左边的+20变为-20 后移到方程右边,把原方程右边的4x变为-4x后移到左边 像上面那样,把等式一边的某项变号后移到另一边,叫做移项 方程中的任何一项都可以在改变符号后,从方程的一边移到另一边,即可以把方程等号右边的项改变符号后移到等号的左边,也可以把方程左边的项改变符号后移到方程的右边,注意要先变号后移项,别忘了变号下面的框图表示了解这个方程的具体过程3x+20=4x-25移项3x-4x=-25-20合并同类项-x
4、=-45系数化为1x=45 由此可知这个班共有45个学生 2. 例2 解方程 3x+7=32-2x (自己动手做一做)【课堂练习】:1解方程:(1)6x-7=4x -5 (2)x-6 = x (3)3x+5=4x+1 (4)9-3y=5y+5 【要点归纳】:上面解方程中“移项”的作用很重要: “移项”使方程中含x的项归到方程的同一边(左边),不含x的项即常数项归到方程的另一边(右边),这样就可以通过“合并”把方程转化为x=a形式 在解方程时,要弄清什么时候要移项,移哪些项,目的是什么? 解方程时经常要“合并同类项”和“移项”,前面提到的古老的代数书中的“对消”和“还原”,指的就是“合并”和“移项”; 【拓展训练】 火眼金睛: 下列移项对不对?如果不对,错在哪里?应当怎样改正? (1)从3x+6=0得3x=6; (2)从2x=x-1得到2x-x=1; (3)从2+x-3=2x+1得到2- 3 -1=2x-x;【总结反思】:4