1、八年级数学下册知识点重点难点总结(人教版) 八年八年级级数学下册知数学下册知识识点点总结总结(人教版)(人教版) 八年级数学下册知识点总结(人教版) 第十七章反比例函数知识点整理 1.定义:形如 y (k 为常数,k0)的函数称为反比例函数。 2.其他形式 xy=k (k 为常数,k0)都是。 3.图像:反比例函数的图像属于双曲线。 反比例函数的图象既是轴对称图形又是中心对称图形。 有两条对称轴:直线 y=x 和 y=-x。 对称中心是:原点 3.性质:当 k0 时双曲线的两支分别位于第一、第三象限,在每个象限内 y 值随 x 值的增大而减小。 当 k0 时双曲线的两支分别位于第二、第四象限,
2、在每个象限内 y 值随 x 值的增大而增大。 4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴 所作的垂线段与两坐标轴围成的矩形的面积。 第十八章 勾股定理 1.勾股定理:如果直角三角形的两直角边长分别为 a,b,斜边长为 c,那么 a2 b2=c2。 2.勾股定理逆定理:如果三角形三边长 a,b,c 满足 a2b2=c2。,那么这个三角 形是直角三角形。 八年级数学下册知识点重点难点总结(人教版) 3.经过证明被确认正确的命题叫做定理。 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原 命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 第十九章 四
3、边形 平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。 平行四边形的性质:平行四边形的对边相等; 平行四边形的对角相等。 平行四边形的对角线互相平分。 平行四边形的判定 1.两组对边分别相等的四边形是平行四边形 2.对角线互相平分的四边形是平行四边形; 3.两组对角分别相等的四边形是平行四边形; 4.一组对边平行且相等的四边形是平行四边形。 三角形的中位线平行于三角形的第三边,且等于第三边的一半。 直角三角形斜边上的中线等于斜边的一半。 矩形的定义:有一个角是直角的平行四边形。 矩形的性质: 矩形的四个角都是直角; 矩形的对角线平分且相等。AC=BD 矩形判定定理: 1.有一个角是直
4、角的平行四边形叫做矩形。 2.对角线相等的平行四边形是矩形。 3.有三个角是直角的四边形是矩形。 菱形的定义 :邻边相等的平行四边形。 八年级数学下册知识点重点难点总结(人教版) 菱形的性质:菱形的四条边都相等; 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。 菱形的判定定理: 1.一组邻边相等的平行四边形是菱形。 2.对角线互相垂直的平行四边形是菱形。 3.四条边相等的四边形是菱形。 S 菱形=1/2ab(a、b 为两条对角线) 正方形定义:一个角是直角的菱形或邻边相等的矩形。 正方形的性质:四条边都相等,四个角都是直角。 正方形既是矩形,又是菱 形。 正方形判定定理:1.邻边相等
5、的矩形是正方形。 2.有一个角是直角的菱形是正 方形。 梯形的定义: 一组对边平行,另一组对边不平行的四边形叫做梯形。 直角梯形的定义:有一个角是直角的梯形 等腰梯形的定义:两腰相等的梯形。 等腰梯形的性质:等腰梯形同一底边上的两个角相等; 等腰梯形的两条对角线相等。 等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。 解梯形问题常用的辅助线:如图 线段的重心就是线段的中点。 平行四边形的重心是它的两条对角线的交点。 三 角形的三条中线交于疑点,这一点就是三角形的重心。 宽和长的比是 (约为 0.618)的矩形叫做黄金矩形。 八年级数学下册知识点重点难点总结(人教版) 第二十章 数据的分析
6、 1.算术平均数: 2.加权平均数:加权平均数的计算公式。 权的理解:反映了某个数据在整个数据中的重要程度。 而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。 3.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇 数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶 数,则中间两个数据的平均数就是这组数据的中位数。 4.一组数据中出现次数最多的数据就是这组数据的众数(mode)。 5.一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。 6. 方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。 数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数 据 5.撰写调查报告 6.交流 7. 平均数受极端值的影响众数不受极端值的影响,这是一个优势,中位数的计 算很少不受极端值的影响。