1、数学史总复习数学史总复习考试题型考试题型一、填空题二、选择题三、名词解释四、简答题 五、论述题第第0章章 数学史数学史人类文明的重要篇章人类文明的重要篇章一、数学史研究哪些内容?二、历史上关于数学概念的定义有哪些?三、数学史通常采用哪些线索进行分期。四、本书对数学史如何分期?一、数学史研究哪些内容?P1 答:数学史研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。二、历史上关于数学概念的定义有哪些?P58答:1、公元前4世纪的希腊哲学家亚里士多德将数学定义为“数学是量的科学”。2、16世纪英国哲学家培根(15611626)将数学分为“纯粹数学”与“混合数学”。
2、3、在17世纪,笛卡儿(15961650)认为:“凡是以研究顺序(order)和度量(measure)为目的的科学都与数学有关”。4、19世纪恩格斯这样来论述数学:“纯数学的对象是现实世界的空间形式与数量关系”。根据恩格斯的论述,数学可以定义为:“数学是研究现实世界的空间形式与数量关系的科学。”5、19世纪晚期,集合论的创始人康托尔(18451918)曾经提出:“数学是绝对自由发展的学科,它只服从明显的思维,就是说它的概念必须摆脱自相矛盾,并且必须通过定义而确定地、有秩序地与先前已经建立和存在的概念相联系”。6、20世纪50年代,前苏联一批有影响的数学家试图修正前面提到的恩格斯的定义来概括现代
3、数学发展的特征:“现代数学就是各种量之间的可能的,一般说是各种变化着的量的关系和相互联系的数学”。7、从20世纪80年代开始,又出现了对数学的定义作符合时代的修正的新尝试。主要是一批美国学者,将数学简单地定义为关于“模式”的科学:“【数学】这个领域已被称作模式的科学,其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性”。三、数学史通常采用哪些线索进行分期?P9答:一般可以按照如下线索:(1)按时代顺序;(2)按数学对象、方法等本身的质变过程;(3)按数学发展的社会背景。四、本书对数学史如何分期?P9答:1、数学的起源与早期发展(公元前6世纪前)2、初等数学时期(公元前6世纪
4、一16世纪)(1)古代希腊数学(公元前6世纪6世纪)(2)中世纪东方数学(3世纪一15世纪)(3)欧洲文艺复兴时期(15世纪一16世纪)3、近代数学时期(变量数学,17世纪18世纪)4、现代数学时期(1820年一现在)(1)现代数学酝酿时期(1820一1870)(2)现代数学形成时期(18701940)(3)现代数学繁荣时期(当代数学时期,1950现在)第一章第一章 数学的起源与早期发展数学的起源与早期发展 一、世界上早期常见有几种古老文明记数系统,它们分别是什么数字,采用多少进制数系?二、“河谷文明”指的是什么?三、关于古埃及数学的知识主要依据哪两部纸草书?纸草书中问题绝大部分都是实用性质,
5、但有个别例外,请举例。四、美索不达米亚人的记数制远胜埃及象形数字之处主要表现在哪些方面?一、世界上早期常见有几种古老文明记数系统,它们分别是什么数字,采用多少进制数系?P13答:1古埃及的象形数字(公元前3400年 左右):十进制数系2巴比伦楔形数字(公元前2400年左右):六十进制数系3中国甲骨文数字(公元前1600年左右):十进制数系4希腊阿提卡数字(公元前500年左右):十进制数系5中国筹算数码数字(公元前500年左右):十进制数系6印度婆罗门数字(公元前300年左右):十进制数系7玛雅数字(?):二十进制数系二、“河谷文明”指的是什么?P16答:历史学家往往把兴起于埃及。美索不大米亚、
6、中国和印度等地域的古代文明称为“河谷文明”。三、关于古埃及数学的知识主要依据哪两部纸草书?P17,纸草书中问题绝大部分都是实用性质,但有个别例外,请举例。P23答:古埃及数学的知识主要依据莱茵德纸草书和莫斯科纸草书两部纸草书。例如:莱茵德纸草书第79题:“7座房,49只猫,343只老鼠,2401棵麦穗,16807赫卡特。四、美索不达米亚人的记数制远胜埃及象形数字之处主要表现在哪些方面?P23-25答:1、六十进制为主德楔形文记数系统,2、巧妙地将位值原理应用到整数以外 的分数。3、计算程序化 4、数表计算第二章第二章 古代希腊数学古代希腊数学 一、希腊数学一般是指什么时期,活动于什么地方的数学
7、家创造的数学?二、什么使泰勒斯获得了第一位数学家和论证几何学鼻祖的美名?三、毕达哥拉斯学派认为宇宙万物皆依赖于整数的信条由于什么发现而受到动摇?这个“第一次数学危机”是由于什么人提出的新比例理论而暂时消除,这个新比例理论当今的语言可怎么叙述?四、希腊数学学派主要有哪些学派?一、希腊数学一般是指什么时期,活动于什么地方的数学家创造的数学?P32答:希腊数学一般指从公元前600年至公元600年间,活动于希腊半岛、爱琴海区域、马其顿与色雷斯地区、意大利半岛、小亚细亚以及非州北部的数学家们创造的数学。五、古希腊三大著名几何问题是什么?六、亚里士多德物理学中记载芝诺提出的 四个著名的悖论是什么?七、希腊
8、数学的“黄金时代”指的是什么时间?这时期希腊数学的中心从雅典移到何处,此处出现了哪三大数学家?八、几何原本共分多少卷,包括有多少条公理,多少条公设,多少个定义和多少条命题?九、阿基米德数学研究的最大功绩是什么?十、阿波罗尼奥斯最重要的数学成就是什么?二、什么使泰勒斯获得了第一位数学家和论证几何学鼻祖的美名?P33答:关于泰勒斯并没有确凿的传记资料留传下来。但是以下命题记载却流传至今,使泰勒斯获得了第一位数学家和论证几何学鼻祖的美名。泰勒斯曾证明了下列四条定理:1、圆的直径将圆分为两个相等的部分;2、等腰三角形两底角相等;3、两相交直线形成的对顶角相等;4、如果一三角形有两角、一边分别与另一三角
9、形的对应角、边相等,那么这两个三角形全等。传说泰勒斯还证明了现称“泰勒斯定理”的命题:半圆上的圆周角是直角。三、毕达哥拉斯学派认为宇宙万物皆依赖于整数的信条由于什么发现而受到动摇?这个“第一次数学危机”是由于什么人提出的新比例理论而暂时消除,P38这个新比例理论当今的语言可怎么叙述?P48答:毕达哥拉斯学派认为宇宙万物皆依赖于整数的信条由于不可公度量的发现而受到动摇,这个“第一次数学危机”是大约一个世纪以后,由于毕达哥拉撕学派成员阿契塔斯的学生欧多克斯提出的新比例理论而暂时消除。这这个个新新比比例例理理论论当当今今的的语语言言可可叙叙述述为为(P P4 48 8):设设A A,B B,C C,
10、D D 是是任任意意四四个个量量,其其中中A A 和和B B 同同类类,C C 和和D D同同类类,如如果果对对于于任任意意两两个个正正整整数数 m m 和和 n n,关关系系()mAnB 是是否否成成立立,相相应应地地取取决决于于关关系系()mCnD 是是否否成成立立,则则称称 A A 与与 B B 之之比比等等于于 C C与与 D D 之之比比,即即四四量量成成比比例例 四、希腊数学学派主要有哪些学派?P39答:希腊数学也随之走向繁荣,学派林立,主要有:1、伊利亚学派;2、诡辩学派;3、雅典学院(柏拉图学派);4、亚里士多德学派。五、古希腊三大著名几何问题是什么?P40答:(1)化圆为方,
11、即作一个给定的圆面积相等的正方形。(2)倍方立体,即求作一立方体,使其体积等于已知立方体的两倍。(3)三等分角,即分任意角为三等分。六、亚里士多德物理学中记载芝诺提出的四个著名的悖论是什么?P43答:芝诺四个著名悖论:1、两分法2、阿基里斯3、飞箭4、运动场七、希腊数学的“黄金时代”指的是什么时间?这时期希腊数学的中心从雅典移到何处,此处出现了哪三大数学家?P45答:从公元前338年希腊诸邦被马其顿控制,至公元前30年罗马消灭最后一个希腊化国家托勒密王国的三百余年,史称希腊数学的“黄金时代”。这时期希腊数学的中心从雅典移到亚历山大城;此处出现了欧几里得、阿基米德和阿波罗尼奥斯三大数学家,标志着
12、古代希腊数学的颠峰。八、几何原本共分多少卷,包括有多少条公理,多少条公设,多少个定义和多少条命题?P46答:几何原本共分13卷,包括有5条公理,5条公设,119定义和465条命题.九、阿基米德数学研究的最大功绩是什么?P5253 答:阿基米德数学研究的最大功绩是集中探讨与面积与体积计算相关的问题。主要著述:(1)圆的度量(2)抛物线求积(3)论螺线(4)论球和圆柱(5)论劈锥曲面和旋转椭球(6)引理集(7)处理力学问题的方法(8)论平面图形的平衡或其重心(9)论浮体(10)沙粒计数(11)牛群问题 十、阿波罗尼奥斯最重要的数学成就是什么?P58答:阿波罗尼奥斯最重要的数学成就是创立了相当完美的
13、圆锥曲线理论。第三章第三章 中世纪的中国数学中世纪的中国数学一、中国数学史上何时何人何种方法最先完成勾股定理证明?二、九章算术中各章名称是什么?这些章节中谈论算术、代数、几何方面的内容为哪些章节?三、刘徽的数学成就中最突出是什么?四、贾宪增乘开方法能否适用于开任意高次方?五、为什么说一次同余组求解的剩余定理常常被称为“中国剩余定理”?一、中国数学史上何时何人何种方法最先完成勾股定理证明?P70答:公元3世纪三国时期的赵爽在注周髀算经,作“勾股圆方图“,其中的”弦图“,相当于运用面积的出入相补证明了勾股定理。二、九章算术中各章名称是什么?这些章节中谈论算术、代数、几何方面的内容为哪些章节?P71
14、-78答:九章算术采用问题集的形式,全书246个问题,分成九章,依次为:方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股,其中所包含的数学成就是丰富和多方面的。算术方面:方田、粟米、衰分、均输、盈不足代数方面:方程几何方面:方田、商功、勾股三、刘徽的数学成就中最突出是什么?P78 答:刘徽的数学成就中最突出是“割圆术”和“体积理论”四、贾宪增乘开方法能否适用于开任意高次方?P93答:贾宪增乘开方法,是一个非常有效的和高度机械化的算法,可适用于开任意高次方。五、为什么说一次同余组求解的剩余定理常常被称为“中国剩余定理”?P96答:秦九韶(约公元12021261)的“大衍求一术”是完全正确且
15、十分严密的,但本人没有给出证明,到18、19世纪,欧拉(1743)和高斯(1801)分别对一次同余组进行了详细研究,重新独立地获得与秦九韶“大衍求一术”相同的定理,并对模数两两互素的情形作出了严格证明。1876年德国人马蒂生首先指出秦九韶的算法与高斯算法是一致的,因此关于一次同余组求解的剩余定理常常被称为“中国剩余定理”。第四章第四章 印度与阿拉伯的数学印度与阿拉伯的数学 一、印度数学的发展可划分为三个重要时期,这三个重要时期是指什么时期?二、用圆圈符号“O”表示零,可以说是印度数学的一大发明,印度人起初用什么表示零,直到最后发展为圈号。三、“巴克沙利手稿”中涉及到哪些的数学内容?四、“阿拉伯
16、数学“是否单指阿拉伯国家的数学?五、第一次给出一元二次方程的一般代数解法是来至何人著的著作?一、印度数学的发展可划分为3个重要时期,这3个重要时期是指什么时期?答;印度数学的发展可以划分为三个重要时期,首先是雅利安人入侵以前的达罗毗(pi)荼人时期(约公元前3000前1400),史称河谷文化;随后是吠(fei)陀(tuo)(约公元前10世纪前3世纪);其次是悉檀(tan)多时期(5世纪12世纪).二、用圆圈符号“O”表示零,可以说是印度数学的一大发明,印度人起初用什么表示零,直到最后发展为圈号。答:点号,直到最后发展为圈号。1.“0”表示空位;2.“0”表示“无”;3.数域的一个基本元素,可以
17、运算。三、“巴克沙利手稿”中涉及到哪些的数学内容?P107答:“巴克沙利手稿”中涉及到分数,平方根、数列、收支与利润计算、比例算法、级数求和、代数方程等,其代数方程包括一次方程、联立方程组、二次方程。特别值得注意的是手稿中使用了一些数学符号如:减号、零号“0”。四、“阿拉伯数学“是否单指阿拉伯国家的数学?P113答:“阿拉伯数学“并非单指阿拉伯国家的数学,而是指815世纪阿拉伯帝国统治下整个中亚和西亚地区的数学,包括希腊人、波斯人、犹太人和基督徒等所写的阿拉伯文及波斯文等数学著作。五、第一次给出一元二次方程的一般代数解法是来自何人著的著作?P114答:第一次给出一元二次方程的一般代数解法是来自
18、中世纪对欧洲数学影响最大的阿拉伯数学家花拉子米(约783850)的代数学。第五章第五章 近代数学的兴起近代数学的兴起 一、卡尔丹在1545年出版的著作大法中公布了形如x3+mx2=n(m,n0)的三次方程的解法是从何人那里传授来的?在大法中卡尔丹对三次方程又进一步作了哪些工作?二、数学符号系统化首先应归功于哪位数学家,对这位数学使用的代数符号的改进工作是由何人完成的?三、球面三角与平面三角何者先出现?四、对数是何人首先发明?它的产生主要是由于什么的需要?五、笛卡儿创立解析几何的灵感有几个传说,请试述其中的任意一 一、卡尔丹在1545年出版的著作大法中公布了形如x3+mx2=n(m,n0)的三次
19、方程的解法是从何人那里传授来的?在大法中卡尔丹对三次方程又进一步作了哪些工作?P126答:卡尔丹在1545年出版的著作大法中公布了形如x3+mx2=n(m,n0)的三次方程的解法是从塔塔利亚(14991557)那里传授来的。在大法中卡尔丹给出了一般三次方程的解法,而且补充了几何证明;书中还把其学生费拉里(15221565)的一般四次方程的解法写进大法中。二、学 符 号 系 统 化 首 先 应 归 功 于 哪位 数 学 家,对 这 位数学使用的代数符号的 改进工作是由 何人完成的?P129 答:数 学 符 号 系统 化 首 先 应归 功 于 法国 数 学 家 韦 达(1540 1603),对 这
20、 位 数 学 使 用 的 代 数 符 号 的 改进 工 作 是 由 法国 笛 卡 儿(1596 1650)完 成 的,他 首 先 用 拉 丁 字 母(,abcd)表 示 已 知 量,后几 个(,x y z w)表 示 未 知 量 等。三、球面三角与平面三角何者先出现?P131答:球面三角先于平面三角出现。四、对数是何人首先发明?它的产生主要是由于什么的需要?P136答:苏格兰贵族数学家纳皮尔正是在球面天文学的三角研究中首先发明对数方法的。对数的产生主要是由于天文和航海计算的强烈需要。五、笛卡儿创立解析几何的灵感有几个传说,请试述其中的任意一个。P142答:笛卡儿创立解析几何的灵感有两个传说。第
21、一个传说“晨思”时,看见一只天花板的苍蝇,想确定其路线;另一个传说是1619年冬天的三个连惯的三个梦。第六章第六章 微积分的创立微积分的创立 一、微积分与积分学的起源何者在先,何者在后?二、微积分酝酿阶段最有代表性的工作有哪几项?三、牛顿走上创立微积分之路受哪两部著作的影响最深?四、牛顿1666年写了流数简论之后,始终不渝努力改进,完善自己的微积分学说,先后写成三篇微积分论文,这三篇论文的名称是什么?为什么其中第三篇是牛顿最成熟的微积分著述?五、为什么说在微积分的创立上牛顿需要与莱布尼茨分享荣誉?一、微积分与积分学的起源何者在先,何者在后?P145答:积分学的起源在先,微积分的起源比积分学的起
22、源要晚的多。二、微积分酝酿阶段最有代表性的工作有哪几项?P146154答:(一)开普勒与旋转体体积;(二)卡瓦列里不可分量原理;(三)笛卡尔“圆法”;(四)费马求极大值与极小值的方法;(五)巴罗“微分三角形”;(六)沃利斯“无穷算术”。三、牛顿走上创立微积分之路受哪两部著作的影响最深?P155答:就数学思想的形成而言,笛卡儿的几何学和沃利斯的无穷算术对他的影响最深,正是这两部著作引导牛顿走上创立微积分之路。四、牛顿1666年写了流数简论之后,始终不渝努力改进,完善自己的微积分学说,先后写成三篇微积分论文,这三篇论文的名称是什么?P158为什么其中第三篇是牛顿最成熟的微积分著述?P160答:牛顿
23、1666年写了流数简论之后,始终不渝努力改进,完善自己的微积分学说,先后写成三篇微积分论文,这三篇论文的名称是:1、运用无穷多项方程的分析,简称分析学(1669)2、流数法与无穷级数,简称流数法(1671)3、曲线求积分简称求积术(1691)五、为什么说在微积分的创立上牛顿需要与莱布尼茨分享荣誉?P174答:牛顿和莱布尼茨都是他们时代的巨人,就微积分的创立而言,尽管在背景、方法和形式上存在差异、各有特色,但两者的功绩是相当的,他们都使微积分成为能普遍适用的算法,同时又都将面积、体积及相当的问题归结为反切线(微分)运算。应该说,微积分能成为独立的科学并给整个自然科学带来革命性的影响,主要是靠了牛
24、顿与莱布尼兹的工作,在科学上,重大的真理往往在条件成熟的一定时期的探索者相互独立地发现,微积分地出来,情形也是如此。所以说在微积分的创立上牛顿需要与莱布尼茨分享荣誉。第七章第七章 分析时代分析时代 一、18世纪微积分发展包括哪几个主要方 面?二、简述18世纪常微分方程的发展过程。三、简述18世纪微分几何的形成过程。四、简述哥德巴赫猜想与华林问题。一、18世纪微积分发展包括哪几个主要方面?P176187答:(一)积分技术与椭圆积分,(二)微积分向多元函数的推广,(三)无穷级数理论,(四)函数概念的深化,(五)微积分严格化的尝试。二、简述18世纪常微分方程的发展过程。P188答:1、常微分方程是伴
25、随着微积分一起发展起来的,从17世纪末开始,摆的运动、弹性理论以及天体力学等实际问题的研究引出了一系列常微分方程。2、数学家们起初是采取特殊的技巧来对付特殊的方程,但逐渐开始寻找带普遍性的方法,如:莱布尼兹1691年分离变量法,1696年雅各布伯努利的“伯努利方程”;欧拉和克莱洛的“积分因子法”。3、欧拉1743年关于n阶常系数线性齐次方程的完整解法。4、18世纪常微分方程求解的最高成就是拉格朗日17741775年间用参数变易法解出了一般n阶变系数非齐次常微分方程。三、简述18世纪微分几何的形成过程。P196答:1、1731年十八岁的法国青年数学家克莱洛发表关于双重曲率曲线的研究,开创了空间曲
26、线理论,是建立微分几何的的重要一步;2、欧拉是微分几何的重要奠基人。他早在1736年就引进了平面曲线的内在坐标概念;3、18世纪微分几何的发展由于蒙日的工作而臻于高峰,1795年发表的关于分析的几何应用的活页论文是第一步系统的微分几何著述。四、述哥德巴赫猜想与华林问题。P204 答:哥德巴赫猜想从:每个偶数是两个素数之和;每个奇数是三个素数之和。华林问题:任一自然数n可表示成至多r次幂之和,即123kkkkrnxxxx,其中123,rx x xx为自然数,r依赖于k。第八章第八章 代数学的新生代数学的新生 一、数学家阿贝尔通过证明什么样的结论解决了五次和高于五次的一般方程的求解问题?二、布尔的
27、逻辑代数思想集中在他的哪两本书中。三、算术研究的作者是谁,发表的年份是何时?它的发表有何意义。一、数学家阿贝尔通过证明什么样的结论解决了五次和高于五次的一般方程的求解问题?P208 答:1824 年,年仅22 岁的挪威数学家阿贝尔(18021829)出版的论代数方程,证明一般五次方程的不可解性,在其中严格证明了:如果方程的次数5n,并且系数12,na aa看成字母,那么任何一个由这些字母组成的根式都不可能是方程的根,这样,五次和高于五次的一般方程的求解问题就由阿贝尔解决了。二、布尔的逻辑代数思想集中在他的哪两本书中。P219答:布尔(英国数学家,18151864)的逻辑代数思想集中在他的184
28、7年发表的逻辑的数学分支和1854年出版的思维规律研究。三、算术研究的作者是谁,发表的年份是何时?它的发表有何意义。P221答:算术研究是德国数学家高斯在1801年发表的。在19世纪以前,数论只是一系列孤立的结果,算术研究发表后数论作为现代数学的一个重要分支得到了系统的发展。算术研究中有三个主要思想:同余理论,复整数理论和型的理论。第九章第九章 几何学的变革几何学的变革 一、非欧几何三位发明人(高斯、波约、罗巴切夫斯基)中哪位是最早、最系统地发表自己关于非欧几何的研究成果?二、最先理解非欧几何全部意义的数学家是谁?在欧几里得空间中给出非欧几何的直观模型的数学家有哪几位?三、在射影几何的发展过程
29、中,庞斯列有哪些创举?一、非欧几何三位发明人(高斯、波约、罗巴切夫斯基)中哪位是最早、最系统地发表自己关于非欧几何的研究成果?P230答:罗巴切夫斯基。二、最先理解非欧几何全部意义的数学家是谁?在欧几里得空间中给出非欧几何的直观模型的数学家有哪几位?P235236答:最先理解非欧几何全部意义的数学家是黎曼 在欧几里得空间中给出非欧几何的直观模型的数学家有:意大利数学家贝尔特拉米、德国数学家克莱因和法国数学家庞加莱。三、在射影几何的发展过程中,庞斯列有哪些创举?P239240答:庞斯列(法国数学家,17881867)1822年出版的论图形的射影性质,带来了这门学科历史上的黄金时期。庞斯列有探讨一
30、般问题:图形在射影和截影下保持不变的性质;选择并发展了对偶与调和点列理论;采用中心投影而不是平行投影及两个基本原理连续性原理和对偶原理的创举。第十章第十章 分析的严格化分析的严格化 一、柯西在分析基础工作方面做了哪些工作?二、魏尔斯特拉斯在1861年举出一个什么例子来说明存在处处连续但却处处不可微的函数?三、魏尔斯特拉斯关于分析严格化的突出表现是创造了一套什么语言?四、集合论的建立是由哪些问题研究而导致的?五、19世纪分析的扩展表现在哪些方面?一、柯西在分析基础工作方面做了哪些工作?P247答:柯西(法国数学家,17891851)在分析基础工作方面,他写出了一系列著作,其中最有代表性的是分析教
31、程(1821)和无穷小计算教程概论(1823),它们以严格化为目标,对微积分的基本概念,如变量、函数、极限、连续性、导数、微分、收敛等等给出了明确的定义,并在此基础上重建和拓展了微积分的重要事实与定理。二、魏尔斯特拉斯在 1861 年举出一个什么例子来说明存在处处连续但却处处不可微的函数?P250 答:魏尔斯特拉斯在1861年举出一个例子 0()cos(),3(0,1)1.2nnnf xba xabab 其中 是奇数,为常数,使得 三、魏尔斯特拉斯关于分析严格化的突出表现是创造了一套什么语言?P253答:魏尔斯特拉斯关于分析严格化的突出表现是创造了一套-语言。四、集合论的建立是由哪些问题研究而
32、导致的?P255答:在分析的严格化过程中,一些基本概念如极限、实数、级数等的研究都涉及到由无穷多个元素组成的集合,特别是在对那些不连续函数进行分析时,需要对使函数不连续或使收敛问题变得很困难的点集进行研究,这样就导致了集合论的建立。五、19世纪分析的扩展表现在哪些方面?P258263答:1、复分析的建立;2、解析数论的形成;3、数学物理方程与微分方程。第十一章第十一章 20世纪数学概观(世纪数学概观(I)纯粹数学的主要趋)纯粹数学的主要趋势势 一、与19世纪相比,20世纪纯粹数学的发展表现出哪些主要的特征与趋势?二、1900年德国数学家希尔伯特在巴黎国际数学家大会上作演说中提出23个数学问题,
33、至今这23个问题解决状况如何?三、集合论观点的渗透和公理化方法的运用导致20世纪上半叶哪四大数学抽象分支的崛兴?四、简述实变函数论的建立。五、“泛函”这个名称是由谁最先采用的?为什么说泛函分析的建立体现了20世纪在集合论影响下空间和函数这两个基本概念的进一步变革?六、环中的理想论的作者是谁?七、拓扑学研究什么内容?“拓扑学”这一术语是由何人首先引用的?八、简述概率论起源以及公理化后概率论取得哪些突破?九、举例说明20世纪下半叶不同分支领域的数学思想与数学方法互相融合导致重大发现的事实。十、试述罗素关于集合的悖论。十一、数学基础的三大学派是什么?十二、现代数理逻辑的四大分支是什么?一、与19世纪
34、相比,20世纪纯粹数学的发展表现出哪些主要的特征与趋势?P271答:1、更高的抽象性2、更强的统一性3、更深入的基础探讨二、1900年德国数学家希尔伯特在巴黎国际数学家大会上作演说中提出23个数学问题,至今这23个问题解决状况如何?P272274答:(略,详见教材P272274。)三、集合论观点的渗透和公理化方法的运用导致20世纪上半叶哪四大数学抽象分支的崛兴?P276答:集合论观点的渗透和公理化方法的运用导致20世纪上半叶实变函数论、泛函分析、拓扑学和抽象代数四大数学抽象分支的崛兴。四、简述实变函数论的建立。P276278答:1、法国数学家勒贝格1902年发表的积分,长度与面积中利用以集合论
35、为基础的“测度”概念而建立勒所谓“勒贝格积分”。2、在勒贝格积分的基础上进一步推广导数等其他微积分基本概念,并重建微积分基本定理(微分运算与积分运算的互逆性)等微积分的基本事实,从而形成了一门新的数学分支实变函数论。五、“泛函”这个名称是由谁最先采用的?(P279)为什么说泛函分析的建立体现了20世纪在集合论影响下空间和函数这两个基本概念的进一步变革?P279-280答:“泛函”这个名称是由法国数学家阿达马最先采用的.因为“空间”现在被理解为某类元素的集合,这些元素按习惯被称作“点”,它们之间受到某种关系的约束,这些关系被称之为空间的结构,简言之,“空间”仅仅是具有某种结构的集合,而“函数”的
36、概念则推广为两空间之间的元素(映射)关系。所以说泛函分析的建立体现了20世纪在集合论影响下空间和函数这两个基本概念的进一步变革。六、环中的理想论的作者是谁?P282答:环中的理想论的作者是诺特(18821935)。七、拓扑学研究什么内容?“拓扑学”这一术语是由何人首先引用的?P285答:拓扑学研究几何图形的连续性质,即在连续变形下保持不变的性质(允许拉伸、扭曲,但不能割断和粘合)。“拓扑学”这一术语是由高斯的学生李斯廷1847年首先引用的。八、简述概率论起源以及公理化后概率论取得哪些突破?P287、P291答:概率论起源于博弈问题。P287公理化后概率论取得如下突破:P2911、使随机过程的研
37、究获得了新的起点,2、随机过程是“鞅”,鞅论使随机过程的研究进一步抽象化,1942年开始,日本数学家伊藤清引进随机积分与随机微分方程,不仅开辟了随机过程研究的新道路,而且为一门意义深远的数学新分支随机分析的创立与发展奠定了基础。九、举例说明20世纪下半叶不同分支领域的数学思想与数学方法互相融合导致重大发现的事实。P292-297答:1.微分拓扑与代数拓扑 2整体微分几何 3代数几何 4多复变函数论 5动力系统 6偏微分方程与泛函分析 7随机分析十、试述罗素关于集合的悖论。P298答:以M表示是其自身成员的集合的几何,N表示不是其自身成员的集合的集合。然后问:集合N是否为它自身的成员?如果N是它
38、自身的成员,则N属于M而不属于N,也就是说N不是它自身的成员;另一方面,如果N不是它自身的成员,则N属于N而不属于M,也就是说N是它自身的成员。无论出现哪一种情况,都将导出矛盾的结论。十一、数学基础的三大学派是什么?P300答:1、以罗素为代表的逻辑主义2、以布劳威尔为代表的直觉主义3、以希尔伯特为代表的形式主义十二、现代数理逻辑的四大分支是什么?P303答:1。公理化集合论 2证明论 3模型论 4递归论第十二章第十二章 20世纪数学概观(世纪数学概观(II)空前发展的空前发展的应用数学应用数学 一、应用数学新时代具有哪几个方面特点?二、数学向其他科学渗透表现在哪些方面?三、简述数理统计、运筹
39、学、控制论发展过程。四、简述电子计算机的诞生。五、计算机对数学的影响表现在哪些方面?一、应用数学新时代具有哪几个方面特点?P307309答:1、数学的应用突破了传统的范围而向人类几乎所有的知识领域渗透,2、纯粹数学几乎所有的分支都获得了应用,其中最抽象的一些分支也参与了渗透,3、现代数学对生产技术的应用变得越来越直接,4、现代数学在向外渗透的过程中,产生了一些相对独立的应用学科如:数理统计、运筹学、控制论等等。二、数学向其他科学渗透表现在哪些方面?P309答:1、数学物理2、生物数学3、数理经济学三、简述数理统计、运筹学、控制论发展过程。P317324答:略四、简述电子计算机的诞生。P325答
40、:略五、计算机对数学的影响表现在哪些方面?P330答:1、计算数学的兴旺2、纯粹数学研究与计算机3、计算机科学中的数学第十三章第十三章 20世纪数学概观(世纪数学概观(III)现代数学成果十例现代数学成果十例 一、简述20世纪十例现代数学成果的内容。二、庞加莱猜想、哥德巴赫猜想、黎曼猜想的内容是什么?一 简述20世纪十例现代数学成果的内容。答:1哥德尔不完全性定理。P3392高斯博内公式的推广。P3413米尔诺怪球。P3434阿蒂亚辛格指标定理。P3445孤立子与非线性偏微分方程。P3456四色问题。P3477分形与混沌。P3498有限单群分类。P3539费马大定理的证明。P35510若干著名
41、未决猜想的进展。359 二、庞加莱猜想、哥德巴赫猜想、黎曼猜想的内容是什么?P359 答:庞加莱猜想是拓扑学中一个著名的和基本的问题,即任意一个三维的单连通闭流形必与三维球面同胚。哥德巴赫猜想:偶数都是两个奇素数之和,奇数都是三个奇素数之和。黎曼猜想:在带状区域01中,黎曼11()snsn的零点都位于直线12上。第十四章第十四章 数学与社会数学与社会 一、为什么说数学的发展与社会的进化之间联系是双向的?二、数学如何促进社会进步?三、18501899年间创办,至今仍在发行的主要数学期刊有哪些?四、中国数学会是何年建立的?五、试述各届国际数学家大会召开年份与地点。六、两项影响最大的国际数学奖励是什
42、么奖?中国数学家何人、何年、在何领域取得其中的那个奖?一、为什么说数学的发展与社会的进化之间联系是双向的?P363答:一方面,数学的发展依赖于社会环境,受着社会经济、政治和文化等诸多因素的影响;另一方面,数学的发展又反过来对人类社会的进步起推动作用,包括对人类物质文明和精神文明两大方面的影响。二、数学如何促进社会进步?P363364答:数学的发展对人类社会的进步起推动作用,包括对人类物质文明和精神文明两大方面的影响。数学对人类物质文明的影响,最突出的是反映在与能从根本上改变人类物质生活方式的产业革命的关系上。人类历史上先后共有三次重大的产业革命,其主体技术都与数学的新理论、新方法的应用有直接或
43、间接的关联;数学对于人类精神文明的影响同样也很深刻,数学本就是一种精神,一种探索精神,这种精神的两个要素,即对理性(真理)与完美的追求,千百年来对人们的思维方式、教育方式以及世界观、艺术观等的影响是不容否认的,数学往往成为解放思想的决定性武器。三、18501899年间创办,至今仍在发行的主要数学期刊有哪些?P372答:纯粹与应用数学年报(1850,意大利)数学汇刊(1865,俄国)数学年刊(1868,德国)美国数学杂志(1878,美国)数学年报(1882,瑞典)数学年刊(1884,美国)美国数学月刊(1894,美国)四、中国数学会是建立何年建立的?P376答:1935年中国数学会建立的。五、试
44、述各届国际数学家大会召开年份与地点。P375答:略 六、两项影响最大的国际数学奖励是什么奖?中国数学家何人、何年、在何领域取得其中的那个奖?P376,P378379答:两项影响最大的国际数学奖励是菲尔兹奖和沃尔夫奖。中国数学家丘成桐,1983年,微分几何,偏微分方程,相对论,菲尔兹奖。中国数学家陈省身,1984年,整体微分几何,沃尔夫奖。第十五章第十五章 中国现代数学的开拓中国现代数学的开拓 一、试述17世纪初至19世纪末在中国出现两次西方数学传播的高潮的时间与内容。二、中国第一个大学数学系是在哪所大学设立?三、1912年至1930年中国有哪些大学创办了数学系?四、简述华罗庚生平五、写一篇学习
45、数学史教程的心得体会。一、试述17世纪初至19世纪末在中国出现两次西方数学传播的高潮的时间与内容。P381答:第一次是从17世纪初到18世纪初,标志性的事件是欧几里得原本的首次翻译,17世纪中页以后,文艺复兴时代以来发展起来的西方初等数学知识如三角学、透视学、代数学等也部分传入中国;第二次高潮是从19世纪中叶开始,除了初等数学,这一时期传入的数学知识还包括了解析几何、微积分、无穷级数论、概率论等近代数学。二、中国第一个大学数学系是在哪所大学设立?P383答:1912,中国第一个大学数学系是在北京大学数学系成立。三、1912年至1930年中国有哪些大学创办了数学系?P384答:北京大学、清华大学
46、、南开大学、浙江大学、南京大学、北京师范大学、武汉大学、厦门大学、四川大学、中山大学、东北大学、交通大学、安徽大学、山东大学、河南大学。一、简述华罗庚生平P387答:略二、写一篇学习数学史教程的心得体会。答:略一、填空题1、历史学家往往把兴起于 、和 等地域的古代文明称为“河谷文明”。埃及、美索不达亚、中国、印度2欧几里得是希腊论证几何学的集大成者,他的著作中,最重要的莫过于 。原本3在现存的中国古代数学著作中,是最早的一部。周髀算经4九章算术“”、“”、“”诸章集中讨论比例问题。粟米、衰分、均输5刘徽数学成就中最突出的是“”和 。割圆术、体积理论6 的推导和 的计算是祖冲之本人引以为荣的两大
47、数学成就。球体积 圆周率7宋元数学发展中一个最深刻的动向是代数符号化的尝试,这就是“”和“”。天元术 四圆术8数学符号系统化首先归功于法国数学家 。韦达9解析几何的真正发明归功于法国另外两位数学家 和 。笛卡儿 费马10牛顿的 标志着微积分的诞生。流数简论1118世纪微积分最重大的进步是由 作出的。欧拉12“巴黎三L”指 、。拉普拉斯 拉格朗日 勒让德 13._是历史上并不多见的以“神童”著称的一位数学家。高斯14._可以说是最先理解非欧几何全部意义的数学家。黎曼 1519世纪偏微分方程发展的序幕,是由法国数学家 拉开的。傅立叶 16现代数理统计学作为一门独立学科的奠基人是英国数学家 。费希尔17影响最大的国际数学奖励:和 。菲尔兹奖 沃尔夫奖18._年,中国第一个大学数学系北京大学数学系成立(当时叫“数学门”,后改为“数学系”)。1912