1、复习提问复习提问1.初中所学的函数的概念是什么?初中所学的函数的概念是什么?复习提问复习提问1.初中所学的函数的概念是什么?初中所学的函数的概念是什么?在一个变化过程中有两个变量在一个变化过程中有两个变量x和和y,如果对于如果对于x的每一个值,的每一个值,y都有唯一的值都有唯一的值与它对应与它对应.那么就说那么就说y是是x的函数,其中的函数,其中x叫做自变量叫做自变量.在一个变化过程中有两个变量在一个变化过程中有两个变量x和和y,如果对于如果对于x的每一个值,的每一个值,y都有唯一的值都有唯一的值与它对应与它对应.那么就说那么就说y是是x的函数,其中的函数,其中x叫做自变量叫做自变量.复习提问
2、复习提问2.初中学过哪些函数?初中学过哪些函数?1.初中所学的函数的概念是什么?初中所学的函数的概念是什么?复习提问复习提问正比例函数、反比例函数、一次函数、正比例函数、反比例函数、一次函数、二次函数等二次函数等.1.初中所学的函数的概念是什么?初中所学的函数的概念是什么?在一个变化过程中有两个变量在一个变化过程中有两个变量x和和y,如果对于如果对于x的每一个值,的每一个值,y都有唯一的值都有唯一的值与它对应与它对应.那么就说那么就说y是是x的函数,其中的函数,其中x叫做自变量叫做自变量.2.初中学过哪些函数?初中学过哪些函数?示例示例1:一枚炮弹发射后,经过:一枚炮弹发射后,经过26s落到落
3、到地面击中目标地面击中目标.炮弹的射高为炮弹的射高为845m,且,且炮弹距地面的高度炮弹距地面的高度h(单位:单位:m)随时间随时间t(单位:单位:s)变化的规律是变化的规律是h130t5t2.新课新课示例示例2:近几十年来,大气层中的臭氧迅:近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空沿问题速减少,因而出现了臭氧层空沿问题.下下图中的曲线显示了南极上空臭氧层空洞图中的曲线显示了南极上空臭氧层空洞的面积从的面积从19792001年的变化情况年的变化情况.示例示例3:国际上常用恩格尔系数反映一个:国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数国家人民生活质量的高低,恩格
4、尔系数越低,生活质量越高,下表中恩格尔系越低,生活质量越高,下表中恩格尔系数随时间数随时间(年年)变化的情况表明,变化的情况表明,“八五八五”计划以来,我国城镇居民的生活质量发计划以来,我国城镇居民的生活质量发生了显著变化生了显著变化.“八五八五”计划以来我国城镇居民计划以来我国城镇居民 恩格尔系数变化情况恩格尔系数变化情况1.定义定义形成概念形成概念 设设A、B是非空的数集,如果按照某是非空的数集,如果按照某个确定的对应关系个确定的对应关系f,使对于集合,使对于集合A中的中的任意一个数任意一个数x,在集合,在集合B中都有唯一确定中都有唯一确定的数的数 f(x)和它对应,那么就称和它对应,那么
5、就称f:AB为为从集合从集合A到集合到集合B的一个函数,的一个函数,1.定义定义形成概念形成概念 设设A、B是非空的数集,如果按照某是非空的数集,如果按照某个确定的对应关系个确定的对应关系f,使对于集合,使对于集合A中的中的任意一个数任意一个数x,在集合,在集合B中都有唯一确定中都有唯一确定的数的数 f(x)和它对应,那么就称和它对应,那么就称f:AB为为从集合从集合A到集合到集合B的一个函数,记作:的一个函数,记作:yf(x),x A1.定义定义形成概念形成概念 其中,其中,x叫做自变量,叫做自变量,1.定义定义 其中,其中,x叫做自变量,叫做自变量,x的取值范围的取值范围A叫做函数的定义域
6、;叫做函数的定义域;1.定义定义 其中,其中,x叫做自变量,叫做自变量,x的取值范围的取值范围A叫做函数的定义域;叫做函数的定义域;与与x值相对应的值相对应的y的值叫做函数值,的值叫做函数值,1.定义定义 其中,其中,x叫做自变量,叫做自变量,x的取值范围的取值范围A叫做函数的定义域;叫做函数的定义域;与与x值相对应的值相对应的y的值叫做函数值,的值叫做函数值,函数值的集合函数值的集合 f(x)|x A叫做函数叫做函数的值域的值域.1.定义定义例例1若物体以速度若物体以速度v作匀速直线运动,则作匀速直线运动,则物体通过的距离物体通过的距离S与经过的时间与经过的时间t的关系的关系是是Svt.下列
7、例下列例1、例、例2、例、例3是否满足函数定义是否满足函数定义例例2某水库的存水量某水库的存水量Q与水深与水深h(指最深处指最深处的水深的水深)如下表:如下表:例例3设时间为设时间为t,气温为,气温为T(),自动测温,自动测温仪测得某地某日从凌晨仪测得某地某日从凌晨0点到半夜点到半夜24点点的温度曲线如下图的温度曲线如下图.201510506 12 18 24r 定义域定义域A;r 值域值域f(x)|xR;r 对应法则对应法则f.2.函数的三要素函数的三要素:r 定义域定义域A;r 值域值域f(x)|xR;r 对应法则对应法则f.2.函数的三要素函数的三要素:(2)f 表示对应法则,不同函数中
8、表示对应法则,不同函数中f 的具的具 体含义不一样;体含义不一样;(1)函数符号函数符号yf(x)表示表示y是是x的函数,的函数,f(x)不是表示不是表示 f 与与x的乘积;的乘积;3.表示函数的方法:表示函数的方法:l解析式:把常量和表示自变量的字母解析式:把常量和表示自变量的字母用一系列运算符号连接起来,得到的用一系列运算符号连接起来,得到的式子叫做解析式式子叫做解析式.l列表法:列出表格来表示两个变量之列表法:列出表格来表示两个变量之 间的对应关系间的对应关系.l图象法:用图象表示两个变量之间的图象法:用图象表示两个变量之间的对应关系对应关系.一次函数一次函数f(x)axb(a0)4.已
9、学函数的定义域和值域已学函数的定义域和值域4.已学函数的定义域和值域已学函数的定义域和值域u定义域定义域R,值域,值域R.一次函数一次函数f(x)axb(a0)4.已学函数的定义域和值域已学函数的定义域和值域u定义域定义域R,值域,值域R.)0()(kxkxf反比例函数 一次函数一次函数f(x)axb(a0)4.已学函数的定义域和值域已学函数的定义域和值域u定义域定义域R,值域,值域R.u定义域定义域x|x0,值域,值域y|y0.一次函数一次函数f(x)axb(a0)0()(kxkxf反反比比例例函函数数4.已学函数的定义域和值域已学函数的定义域和值域二次函数二次函数f(x)ax2bxc(a0
10、)4.已学函数的定义域和值域已学函数的定义域和值域二次函数二次函数f(x)ax2bxc(a0)u定义域:定义域:R,4.已学函数的定义域和值域已学函数的定义域和值域二次函数二次函数f(x)ax2bxc(a0)u定义域:定义域:R,值域:值域:.44|2 abacyy.44|2 abacyy当当a0时,时,当当a0时,时,例例1求下列函数的定义域:求下列函数的定义域:例题讲解例题讲解;21)(xxf;23)(xxf.211)(xxxf 例例2已知函数已知函数f(x)3x25x2,求,求f(3),).1()2(aff,;2xy ;)(2xy ;33xy .2xxy 例例3;2xy ;)(2xy ;
11、33xy .2xxy 例例3例例4下列各组中的两个函数是否为相同的下列各组中的两个函数是否为相同的函数?函数?;与与53)5)(3(21 xyxxxy;与与)1)(1(1121 xxyxxy.52)()52()(221 xxfxxf与与例例4下列各组中的两个函数是否为相同的下列各组中的两个函数是否为相同的函数?函数?;与与53)5)(3(21 xyxxxy;与与)1)(1(1121 xxyxxy.52)()52()(221 xxfxxf与与(定义域不同定义域不同)例例4下列各组中的两个函数是否为相同的下列各组中的两个函数是否为相同的函数?函数?;与与53)5)(3(21 xyxxxy;与与)1
12、)(1(1121 xxyxxy.52)()52()(221 xxfxxf与与(定义域不同定义域不同)(定义域不同定义域不同)编后语常常可见到这样的同学,他们在下课前几分钟就开始看表、收拾课本文具,下课铃一响,就迫不及待地“逃离”教室。实际上,每节课刚下课时的几分钟是我们对上课内容查漏补缺的好时机。善于学习的同学往往懂得抓好课后的“黄金两分钟”。那么,课后的“黄金时间”可以用来做什么呢?一、释疑难 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决
13、。二、补笔记 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。三、课后“静思2分钟”大有学问 我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的课后复习30分钟。最新中小学教学课件2022-11-29thank you!最新中小学教学课件2022-11-29