1、有理数复习 有理数的基本概念 1. 负数 在正数前面加“”的数。 0既不是正数也不是负数。 2. 有理数 整数和分数统称为有理数 3. 数轴 规定了原点,正方向和单位长度的直线 (1)数轴上表示的两个数,右边的数总比左边的数大 (2)正数都大于0,负数都小于0,正数大于一切负数 (3)所有有理数都可以用数轴上的点表示 4. 相反数 只有符号不同的两个数,其中一个是另一个的相反数 (1)数a的相反数是(a是任意一个有理数); (2)0的相反数是0; (3)若a、b互为相反数,则a+b=0 5. 倒数 乘积是1的两个数互为倒数。 (1)a的倒数是; (2)0没有倒数; (3)若a与b互为倒数,则a
2、b=1 6. 绝对值 一个数a的绝对值就是数轴上表示数a的点与原点的距离。 (1)a的绝对值记作|a|; (2)若a0,则|a|=a 若a=0,则|a|=0 若a0 7. 有理数大小的比较 (1)可通过数轴比较 在数轴上的两个数,右边的数总比左边的数大 正数都大于0,负数都小于0,正数大于一切负数。 (2)两个负数比较大小,绝对值大的反而小 8. 科学计数法把一个大于10的数记成的形式,其中a是整数位只有一位的数,这种记数法叫做科学记数法。【考点分析】 对负数意义的理解,绝对值的代数和几何意义,有理数的分类,相反数和倒数的概念,科学记数法,有效数字等都是中考命题的热点,考查学生对概念的把握能力
3、。【典型例题】 例1. 判断正误 (1)a一定是正数;(2)一定是负数; (3)一定大于0;(4)0是正整数。 分析:本题主要考查对负数意义的理解 (1)由字母表示数的意义可知,a可是任意的数,既可以是正数,还可以是负数或0,故不正确。 (2)由上题可知,当a是负数或0时,是正数或0,故不正确。 (3)是的相反数,但a可以是一个负数,故不正确。(4)由定义可知0不是正数也不是负数,不正确。 例2. 若,且x、y都是整数,请写出符合条件的x、y的值。 分析:本题是开放性问题,利用绝对值的几何意义和数轴解决问题,即x对应在数轴上的点到原点的距离,与y对应在数轴上的点到原点的距离之和为3。 解:由题
4、意知,x对应在数轴上的点到原点的距离与y对应在数轴上的点到原点的距离之和为3。 从数轴上可以看出,x、y可以取的数应为从-3到3之间的整数。 (1)当x=3时,y=0 (2)当x=2时,y=1 (3)当x=1时,y=2 (4)当x=0时,y=3 (5)当x=1时,y=2 (6)当x=2时,y=1(7)当x=3时,y=0 例3. 数a、b、c在数轴上的位置如图所示,化简。 分析:本题考查数轴上的数的大小及绝对值的代数意义 解:由上图可知 例4. 若,求_。 分析:本题考查绝对值的非负性 解: 若 则 有理数复习(二)(一)运算法则1. 有理数加法法则 (1)同号两数相加,取相同的符号,并把绝对值
5、相加; (2)异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两数相加得0。 (3)一个数同0相加,仍得这个数。 用数学语言描述有理数加法法则: (1)同号相加 若,则 若a0,b0,b|b|,则 若a0,b0,b0,b0,则 若a0,b0,b0,则 若a0,则 (3)数与0相乘 a为任一有理数,则 4. 有理数除法法则 法则一:除以一个数等于乘以这个数的倒数 即 法则二:两数相除,同号为正,异号为负,并把绝对值相除,0除以任何一个不等于0的数,都得0。 用数学语言描述为: (1)同号相除 若a0,b0,则 若a0,b0,b0,则 若a0,则 (3)0除以
6、任何数 若a是任一有理数且,则 5. 有理数的乘方 求几个相同因数的积的运算,叫做乘方。 即: (1)正数的任何次幂都是正数 负数的奇数次幂是负数 负数的偶数次幂是正数 0的任何次幂是0 (2)任何数的偶数次数是非负数 a是任一有理数,则(二)运算顺序 1. 有括号,先算括号里面的; 2. 先算乘方,再算乘除,最后算加减 3. 对只含乘除或只含加减的运算,应从左往右运算(三)有理数的运算律 1. 加法交换律: 2. 加法结合律: 3. 乘法交换律: 4. 乘法结合律: 5. 乘法分配律:【考点分析】有理数的运算是中考必考内容,选择、填空或解答是其考查题型,也会融入其他知识点中考查学生的计算能力
7、。【典型例题】例1. 若,且,求的值。分析:首先确定a、b、c的值,再代入求解,要进行分类讨论,讨论要全面,做到不重不漏。 解: 又由 a=3,b= 由 综上,a=3,b=, 当b=1时, 当b=时,所以的值为或 例2. a与b互为倒数,x与y互为相反数,c的绝对值等于2,求的值。 分析:本题主要考查倒数,相反数和绝对值的意义。 解:由题意知: ab=1,x+y=0, 例3. 已知,求。 分析:本题是考查绝对值和有理数偶数次方的非负性 解: 又 ,b=2 把,b=2代入得: 例4. 以下是一个简单的数值运算程序 输入x输出,当输入的值为时,求输出的值为多少? 分析:解这类问题的关键是根据数值运算程序列出算式,然后进行有理数的混合运算。 解:当输入的值为时,输出的值为: