1、13.2 命题与证明导入新课讲授新课当堂练习课堂小结第3课时 三角形内角和定理的证明及推论1、21.掌握“三角形内角和定理”的证明及其简单应用,理解和掌握三角形内角和定理的推论1和推论2;(重点、难点)2.了解辅助线的概念,理解辅助线在解题过程中的用处;(难点)3.经历思考、操作、推理等学习活动,培养学生的推理能力和表达能力(难点)学习目标我的形状最小,那我的内角和最小.我的形状最大,那我的内角和最大.不对,我有一个钝角,所以我的内角和才是最大的.一天,三类三角形通过对自身的特点,讲出了自己对三角形内角和的理解,请同学们作为小判官给它们评判一下吧.导入新课导入新课情境引入思考:除了度量以外,你
2、还有什么办法可以验证三角形的内角和为180呢?折叠还可以用拼接的方法,你知道怎样操作吗?三角形的三个内角拼到一起恰好构成一个平角.你能用数学的方法说明这个结论吗?还有其他的拼接方法吗?讲授新课讲授新课三角形的内角和的证明一活动:在纸上任意画一个三角形,将它的内角剪下拼合在一起.l三角形三个内角的和等于180.求证:A+B+C=180.已知:ABC.证法1:过点A作lBC,B=1.(两直线平行,内错角相等)C=2.(两直线平行,内错角相等)2+1+BAC=180,B+C+BAC=180.12证法2:延长BC到D,过点C作CEBA,A=1.(两直线平行,内错角相等)B=2.(两直线平行,同位角相等
3、)又又1+2+ACB=180,A+B+ACB=180.CBAED12CBAEDF证法3:过D作DEAC,作DFAB.C=EDB,B=FDC.(两直线平行,同位角相等)A+AED=180,AED+EDF=180,(两直线平行,同旁内角相补)A=EDF.EDB+EDF+FDC=180,A+B+C=180.想一想:同学们还有其他的方法吗?思考:多种方法证明的核心是什么?借助平行线的“移角”的功能,将三个角转化成一个平角.C A B 12345l A C B 12345l P 6m ABCDE知识要点在这里,为了证明的需要,在原来的图形上添画的线叫做辅助线.在平面几何里,辅助线通常画成虚线.u思路总结
4、 为了证明三个角的和为180,转化为一个平角或同旁内角互补等,这种转化思想是数学中的常用方法.u作辅助线问题:如图,在RtABC中,C=90,两锐角的和等于多少呢?在RtABC中,因为 C=90,由三角形内角和定理,得A+B+C=90,即A+B=90.思考:由此,你可以得到直角三角形有什么性质呢?三角形内角和定理的推论1、2二直角三角形的两锐角互余.三角形内角和推论1:ABC直角三角形的两个锐角互余u应用格式:在RtABC 中,C=90,A+B=90直角三角形的表示:直角三角形可以用符号“Rt”表示,直角三角形ABC 可以写成RtABC 总结归纳方法一(利用平行的判定和性质):B=C=90,A
5、BCD,A=D.方法二(利用直角三角形的性质):B=C=90,A+AOB=90,D+COD=90.AOB=COD,A=D.例1(1)如图,B=C=90,AD交BC于点O,A 与D有什么关系?图典例精析解:A=C.理由如下:B=D=90,A+AOB=90,C+COD=90.AOB=COD,A=C.(2)如图,B=D=90,AD交BC于点O,A与 C有什么关系?请说明理由.图与图有哪些共同点与不同点?例2 如图,C=D=90,AD,BC相交于点E.CAE与DBE有什么关系?为什么?ABCDE解:在RtACE中,CAE=90-AEC.在RtBDE中,DBE=90-BED.AEC=BED,CAE=DB
6、E.解:CDAB于点D,BEAC于点E,BEA=BDF=90,ABE+A=90,ABE+DFB=90.A=DFB.DFB+BFC=180,A+BFC=180.【变式题】如图,ABC中,CDAB于D,BEAC于E,CD,BE相交于点F,A与BFC又有什么关系?为什么?思考:通过前面的例题,你能画出这些题型的基本 图形吗?基本图形A=CA=D总结归纳问题2:有两个角互余的三角形是直角三角形吗?如图,在ABC中,A+B=90,那么ABC是直角三角形吗?在在ABC中,因为中,因为 A+B+C=180,又又A+B=90,所以,所以C=90.于是于是ABC是直角三角形是直角三角形.三角形内角和推论2:有两
7、个角互余的三角形是直角三角形.ABC应用格式:在ABC 中,中,A+B=90,ABC 是直角三角形有两个角互余的三角形是直角三角形.总结归纳典例精析例3 如图,C=90,1=2,ADE是直角三 角形吗?为什么?ACBDE(12解:在RtABC中,2+A=90.1=2,1+A=90.即ADE是直角三角形.例4 如图,CEAD,垂足为E,A=C,求证:ABD是直角三角形.解:ABD是直角三角形.理由如下:CEAD,CED=90,C+D=90,A=C,A+D=90,ABD是直角三角形.1.如图,一张长方形纸片,剪去一部分后得到一个三角形,则图中1+2的度数是_.902.如图,AB、CD相交于点O,A
8、CCD于点C,若BOD=38,则A=_.52第1题图第2题图当堂练习当堂练习3.在ABC中,若A=43,B=47,则这个三角形是_.直角三角形4.在一个直角三角形中,有一个锐角等于40,则另 一个锐角的度数是()A40 B50 C60 D70 B5.具备下列条件的ABC中,不是直角三角形的是 ()AA+B=C BA-B=C CA:B:C=1:2:3 DA=B=3C D求证:ABCD证明:ADBC,1_()又BADBCD,BAD1BCD2,即34,AB_()6.已知:如图,ADBC,BADBCD2内错角相等,两直线平行CD两直线平行,内错角相等ABCD4213三角形内角和定理的证明及推论1、2课堂小结课堂小结三角形内角和定理的证明推论1:直角三角形的两锐角互余.推论2:有两个角互余的三角形是直角三角形.