1、第20章 数据的整理与初步处理20.1平均数第2课时学习目标1.掌握加权平均数的概念,会求一组数据的加权平均数.(重点)2.会用加权平均数解决实际生活中的问题(难点)情境引入导入新课导入新课 超市中有各种各样的苹果,每种苹果的价格都不样,如果小明的妈妈买了3.5元/千克的苹果1千克,买了6元/千克的苹果3千克,那么小明妈妈所买苹果的平均价格是两个单价相加除以2吗?为什么?在实际问题中,一组数据里的各个数据的“重要程度”未必相同.因而,在计算这组数据的平均数时,往往给每个数据一个“权”一起来看看下面的例子讲授新课讲授新课加权平均数 问题:一家公司打算招聘一名英文翻译,对甲、乙两位应聘者进行了听、
2、说、读、写的英语水平测试,他们的各项成绩如表所示:(1)如果公司想招一名综合能力较强的翻译,请计算两名应聘者的平均成绩,应该录用谁?应试者听说读写甲85788573乙73808283合作探究乙的平均成绩为 73 80 82 8379 54+=.=.显然甲的成绩比乙高,所以从成绩看,应该录取甲我们常用平均数表示一组数据的“平均水平”应试者听说读写甲85788573乙73808283解:甲的平均成绩为 ,85 78 85 7380 254+=.=.平均数(2)如果公司想招一名笔译能力较强的翻译,用平均数来衡量他们的成绩合理吗?应试者听说读写甲85788573乙73808283 听、说、读、写的成绩
3、按照2:1:3:4的比确定 重要程度不一样!应试者听说读写甲85788573乙738082832 :1 :3 :4 732 801 823 83480 42 1 3 4+=.=.+x乙因为乙的成绩比甲高,所以应该录取乙852 781 853 73479 52 1 3 4+=.=.+x甲解:,4 3 1 2 权 思考:能把这种加权平均数的计算方法推广到一般吗?857885721342 13793 45+=.=.+112212+=+nnnx w x wx wxw ww一般地,若n个数x1,x2,xn的权分别是w1,w2,wn,则叫做这n个数的加权平均数归纳(3)如果公司想招一名口语能力较强的翻译,
4、则应该录取谁?应试者听说读写甲85788573乙73808283 听、说、读、写的成绩按照3:3:2:2的比确定同样一张应试者的应聘成绩单,由于各个数据所赋的权数不同,造成的录取结果截然不同.(4)将问题(1)、(2)、(3)比较,你能体会到权的作用吗?应试者听说读写甲85788573乙73808283数据的权能够反映数据的相对重要程度!例1 一次演讲比赛中,评委将从演讲内容,演讲能力,演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容占50%,演讲能力占40%,演讲效果占10%的比例,计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:请决出两人的名次.选手
5、演讲内容演讲能力演讲效果A859595B958595典例精析选手演讲内容演讲能力演讲效果A859595B958595权50%40%10%解:选手A的最后得分是85 50%95 40%95 10%42.5 38 9.59050%40%10%选手B的最后得分是由上可知选手B获得第一名,选手A获得第二名.95 50%85 40%95 10%47.5 34 9.59150%40%10%你能说说平均数与加权平均数的区别和联系吗?2.在实际问题中,各项权不相等时,计算平均数时就要采用加权平均数,当各项权相等时,计算平均数就要采用平均数.1.平均数是加权平均数的一种特殊情况(它特殊在各项的权相等);议一议做
6、一做60 40在2017年中山大学数科院的研究生入学考试中,两名考生在笔试、面试中的成绩(百分制)如下图所示,你觉得谁应该被录取?考生笔试面试甲8690乙9283(笔试和面试的成绩分别按60%和40%计入总分)6 :4 解:根据题意,求甲、乙成绩的加权平均数,得8 66 0%9 04 0%8 7.66 0%4 0%x甲答:因为_,所以_将被录取.x甲x乙乙9 26 0%8 34 0%8 8.46 0%4 0%x乙考试测试1测试2测试3期中期末成绩8978 85 90 87 小青在七年级第二学期的数学成绩如下表格,请按图示的测试、期中、期末的权重,计算小青同学该学期总评成绩.解:先计算小青的平时
7、成绩:(89+78+85)3=84 再计算小青的总评成绩:8410%+9030%+8760%=87.6(分)试一试在求n个数的算术平均数时,如果x1出现f1次,x2出现f2次,xk出现fk次(这里f1+f2+fk=n),那么这n个数的算术平均数nfxfxfxxkk 2211也叫做x1,x2,xk这n个数的加权平均数,其中f1,f2,fk分别叫做x1,x2,xk的权.知识要点加权平均数的其他形式例2 某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人.求这个跳水队运动员的平均年龄(结果取整数).解:这个跳水队运动员的平均年龄为:=_(岁
8、).答:这个跳水队运动员的平均年龄约为_.x 224168161514138162421414岁 某校八年级一班有学生50人,八年级二班有学生45人,期末数学测试中,一班学生的平均分为81.5分,二班学生的平均分为83.4分,这两个班95名学生的平均分是多少?解:(81.550+83.445)95 =782895 =82.4答:这两个班95名学生的平均分是82.4分.做一做当堂练习当堂练习1.一组数据为10,8,9,12,13,10,8,则这组数据的平均数是_.2.已知一组数据4,13,24的权数分别是则这组数据的加权平均数是_.解析:解析:10171 1 1,6 3 21 028291 21
9、 31 07x1114132463217111632x3.某公司有15名员工,他们所在的部门及相应每人所创的年利润(万元)如下表部门ABCDEFG人数1122225年利润/人 200402520151512304.某次歌唱比赛,两名选手的成绩如下:(1)若按三项平均值取第一名,则_是第一名.测试选手测试成绩创新 唱功 综合知识A728567B85747072856785747074.6776.3333ABxx,选手B(2)解:所以,此时第一名是选手A(2)若三项测试得分按3:6:1的比例确定个人的测试成绩,此时第一名是谁?7230%8560%67 10%=79.330%60%10%Ax8530
10、%7460%70 10%=76.930%60%10%Bx5.一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容占50、演讲能力占40、演讲效果占10的比例,计算选手的综合成绩(百分制)进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A859595B958595请决出两人的名次解:选手A的最后得分是855095409510 50401042.5389.590选手B的最后得分是955085409510 50401047.5349.591由上可知选手B获得第一名,选手A获得第二名选手演讲内容(50)演讲能力(40)演讲效果(10)A859595B958595课堂小结课堂小结加权平均数1 1222.kkx fx fx fxn1122121nnnx w x wx wxw ww+.=.=+