初中数学教师培训材料讲座新课标呼唤课堂教学新改变课件.ppt

上传人(卖家):晟晟文业 文档编号:4824999 上传时间:2023-01-15 格式:PPT 页数:50 大小:495.50KB
下载 相关 举报
初中数学教师培训材料讲座新课标呼唤课堂教学新改变课件.ppt_第1页
第1页 / 共50页
初中数学教师培训材料讲座新课标呼唤课堂教学新改变课件.ppt_第2页
第2页 / 共50页
初中数学教师培训材料讲座新课标呼唤课堂教学新改变课件.ppt_第3页
第3页 / 共50页
初中数学教师培训材料讲座新课标呼唤课堂教学新改变课件.ppt_第4页
第4页 / 共50页
初中数学教师培训材料讲座新课标呼唤课堂教学新改变课件.ppt_第5页
第5页 / 共50页
点击查看更多>>
资源描述

1、初中数学教师培训材料初中数学教师培训材料讲座新课标呼唤课堂教讲座新课标呼唤课堂教学新改变学新改变课程标准与课堂教学的关系课程标准与课堂教学的关系 课程标准作为课程的顶层课程标准作为课程的顶层设计,它与一线的课堂教学有什设计,它与一线的课堂教学有什么样的关系呢?么样的关系呢?课程标准与教学的关系课程标准与教学的关系教育目标的教育目标的 层级性及教学内容的规定性层级性及教学内容的规定性n一级一级 教育目的教育目的n二级二级 课程目标课程目标n三级三级 教学目标教学目标教育目标的层级性教育目标的层级性课程标准课程标准内容标准内容标准教学内容教学内容教学内容的规定性教学内容的规定性教材教材 课程标准的

2、价值取课程标准的价值取向、基本理念、目标要求及内容向、基本理念、目标要求及内容标准应该对教师的教学产生重要标准应该对教师的教学产生重要影响,并成为教师课堂教学的基影响,并成为教师课堂教学的基本依据。本依据。n1.总体框架结构n2.关于数学观n3.关于基本理念n4.关于设计思路n5.关于课程目标n6.关于课程内容n7.关于课程实施数学课程标准有哪些新变化?数学课程标准有哪些新变化?20012001年版年版20112011年版年版 分四个部分:前言、课程目标、内容分四个部分:前言、课程目标、内容标准和课程实施建议。标准和课程实施建议。1.1.总体框架结构的修改总体框架结构的修改 把其中的把其中的“

3、内容标准内容标准”改为改为“课程内课程内容容”。前言部分由原来的基本理念和设计思。前言部分由原来的基本理念和设计思路,改为路,改为课程基本性质课程基本性质、课程基本理念课程基本理念和和课课程设计思路程设计思路三部分。三部分。20012001年版年版20112011年版年版 数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。形成方法和理论,并进行广泛应用的过程。数学作为一种普遍适用的技术,有助于人们收集、整理、描数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直

4、接为社会创造价值。述信息,建立数学模型,进而解决问题,直接为社会创造价值。2.2.关于数学观的修改关于数学观的修改数学是研究数量关系和空间形式的科学。数学是研究数量关系和空间形式的科学。数学作为对于客观现象抽象概括而逐渐形成的科学数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。语言与工具。数学是人类文化的重要组成部分,数学素养是现代数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。社会每一个公民应该具备的基本素养。20012001年版年版20112011年版年版 人人学有价值的数学,人人学有价值的数学,人人都能获得必需的数学,人人都能获得必需的数学,不同的人

5、在数学上得到不同的发展。不同的人在数学上得到不同的发展。3.3.课程基本理念的修改课程基本理念的修改人人都能获得良好的数学教育,人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。不同的人在数学上得到不同的发展。(1)“三句三句”变变“两句两句”树立正确的课程观树立正确的课程观20012001年版年版20112011年版年版数学课程数学课程数学数学数学学习数学学习数学教学数学教学活动活动评价评价现代信息技术现代信息技术 3.3.课程基本理念的修改课程基本理念的修改数学课程数学课程课程内容课程内容教学活动教学活动学习学习 评价评价信息技术信息技术(2)“6条条”改改“5条条”将将“数学教

6、学数学教学”与与“数学学习数学学习”合并为合并为数学数学“教学活动教学活动”。具体表述为:。具体表述为:“教学活动教学活动是师生积极参与、交往互动、共同发展的过程。是师生积极参与、交往互动、共同发展的过程。有效的数学教学活动有效的数学教学活动是学生学与教师教的统一是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。织者、引导者与合作者。”3.3.课程基本理念的修改课程基本理念的修改(2)“6条条”改改“5条条”树立正确的数学教学观树立正确的数学教学观20012001年版年版20112011年版年版数与代数数与代数 、空间

7、与图形、统计与概率、空间与图形、统计与概率、实践与综合应用实践与综合应用 4.4.关于设计思路的修改关于设计思路的修改数与代数、数与代数、图形与几何图形与几何、统计与概率、统计与概率、综合与实践综合与实践 (1 1)对四个学习领域的名称作适当调整)对四个学习领域的名称作适当调整 20012001年版年版20112011年版年版数感,符号感,空间观念,统计观念,数感,符号感,空间观念,统计观念,应用意识,推理能力应用意识,推理能力 4.4.关于设计思路的修改关于设计思路的修改数感,数感,符号意识符号意识,空间观念,空间观念,数据分析观数据分析观念念,应用意识,推理能力,应用意识,推理能力,运算能

8、力运算能力,模模型思想型思想,几何直观几何直观,创新意识创新意识(2 2)对课程内容中的若干核心概念作适当调对课程内容中的若干核心概念作适当调整,对其意义作更明确的阐释整,对其意义作更明确的阐释 称为关键词,称为关键词,6个个称为核心概念,称为核心概念,10个个20012001年版年版20112011年版年版基础知识、基本技能基础知识、基本技能 5.5.关于课程目标的修改关于课程目标的修改 基础知识、基本技能、基础知识、基本技能、基本思想基本思想、基本活动经验基本活动经验(1 1)“双基双基”变变“四基四基”双基双基四基四基“四基四基”与数学素养与数学素养n掌握数学基础知识掌握数学基础知识n训

9、练数学基本技能训练数学基本技能n领悟数学基本思想领悟数学基本思想n积累数学基本活动经验积累数学基本活动经验 发展学生的数学素养,培养学生的创发展学生的数学素养,培养学生的创新精神和实践能力新精神和实践能力5.5.关于课程目标的修改关于课程目标的修改(2 2)明确提出了培养学生四种能力。)明确提出了培养学生四种能力。发现问题、提出问题、发现问题、提出问题、分析问题、解决问题分析问题、解决问题20012001年版年版20112011年版年版内容标准内容标准6.6.关于课程内容的修改关于课程内容的修改 课程内容课程内容(1 1)将)将“内容标准内容标准”的提法改为的提法改为“课程内容课程内容”200

10、12001年版年版20112011年版年版“图形的认识图形的认识”、“图形与变换图形与变换”“图形与坐标图形与坐标”、“图形与证明图形与证明”6.6.关于课程内容的修改关于课程内容的修改“图形的性质图形的性质”、“图形的变化图形的变化”“图形与坐标图形与坐标”(2 2)从总体结构上看,)从总体结构上看,“几何与图形几何与图形”领域发领域发生了一些变化,另外三个领域的结构基本没变。生了一些变化,另外三个领域的结构基本没变。6.6.关于课程内容的修改关于课程内容的修改 课程内容中的条目数量统计(第三学段)课程内容中的条目数量统计(第三学段)原标准原标准修改后标准修改后标准差差数与代数数与代数485

11、2(3)+4(3)图形与几何图形与几何8389(4)+6(4)统计与概率统计与概率13112综合与实践综合与实践431合计合计148155(7)+7(7)删除的内容:删除的内容:(数与代数)(数与代数)有效数字有效数字一元一次不等式组的应用一元一次不等式组的应用利用一次函数的图像求二元一次方程组的近似解利用一次函数的图像求二元一次方程组的近似解能对含有较大数字的信息作出合理的解释和判断能对含有较大数字的信息作出合理的解释和判断能解释一些简单代数式的实际背景或几何意义能解释一些简单代数式的实际背景或几何意义能确定简单的整式、分式和简单实际问题中的函数能确定简单的整式、分式和简单实际问题中的函数的

12、自变量取值范围的自变量取值范围删除的内容:删除的内容:(图形与几何)(图形与几何)梯形和等腰梯形的相关内容梯形和等腰梯形的相关内容圆锥的侧面积和全面积圆锥的侧面积和全面积视点、视角、盲区;了解并欣赏一些有趣的图形;视点、视角、盲区;了解并欣赏一些有趣的图形;知道物体的阴影是怎么形成的,能根据光线的方向辨知道物体的阴影是怎么形成的,能根据光线的方向辨认事物的阴影。认事物的阴影。镜面对称镜面对称圆和圆的位置关系圆和圆的位置关系平面图形的镶嵌平面图形的镶嵌能够按要求作出简单平面图形旋转后的图形,探索能够按要求作出简单平面图形旋转后的图形,探索图形之间的变换关系。图形之间的变换关系。删除的内容:删除的

13、内容:(统计与概率)(统计与概率)极差、频数折线图等内容极差、频数折线图等内容新增加的内容:新增加的内容:(数与代数)(数与代数)知道知道a a的含义(这里的含义(这里a a表示有理数)表示有理数)最简二次根式和最简分式的概念最简二次根式和最简分式的概念能进行简单的整式乘法运算中增加了一次式与二次能进行简单的整式乘法运算中增加了一次式与二次式相乘式相乘能用一元二次方程根的判别式判别方程是否有实根能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等和两个实根是否相等会利用待定系数法确定一次函数的解析表达式会利用待定系数法确定一次函数的解析表达式 *能解简单的三元一次方程组能解简单的三元

14、一次方程组*了解一元二次方程的根与系数的关系了解一元二次方程的根与系数的关系*知道给定不共线三点的坐标可以确定一个二次函数知道给定不共线三点的坐标可以确定一个二次函数 新增加的内容:新增加的内容:(图形与几何)(图形与几何)会比较线段的大小,理解线段的和、差,以及线段中会比较线段的大小,理解线段的和、差,以及线段中点的意义点的意义了解平行于同一条直线的两条直线平行了解平行于同一条直线的两条直线平行会按照边长的关系和角的大小对三角形进行分类会按照边长的关系和角的大小对三角形进行分类了解并证明圆内接四边形的对角互补了解并证明圆内接四边形的对角互补了解正多边形的概念及正多边形与圆的关系了解正多边形的

15、概念及正多边形与圆的关系尺规作图:过一点作已知直线的垂线;已知一直角边尺规作图:过一点作已知直线的垂线;已知一直角边和斜边作直角三角形;作三角形的外接圆、内切圆;作和斜边作直角三角形;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形圆的内接正方形和正六边形掌握基本事实:两条直线被一组平行线所截,所得的掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例对应线段成比例 新增加的内容:新增加的内容:(图形与几何)(图形与几何)*了解平行线性质定理的证明了解平行线性质定理的证明*探索并证明垂径定理:垂直于弦的直径平分探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧。弦以及弦所对

16、的两条弧。*探索并证明切线长定理:过圆外一点所画的探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等圆的两条切线的长相等*了解相似三角形判定定理的证明了解相似三角形判定定理的证明要求有变化的内容:要求有变化的内容:(数与代数)(数与代数)20012001年版年版20112011年版年版(1 1)会求有理数的相反数和绝对值)会求有理数的相反数和绝对值 (1 1)掌握求有理数的相反数和绝对值的方法)掌握求有理数的相反数和绝对值的方法 (2 2)绝对值符号内不含字母)绝对值符号内不含字母 (2 2)知道)知道a a 的含义的含义(这里这里a a表示有理数表示有理数)(3 3)会用平方运算求某

17、些非负数的平方根)会用平方运算求某些非负数的平方根 (3 3)会用平方运算求百以内整数的平方根)会用平方运算求百以内整数的平方根 (4 4)用立方运算求某些数的立方根)用立方运算求某些数的立方根 (4 4)会用立方运算求百以内整数(对应的负)会用立方运算求百以内整数(对应的负数)的立方根数)的立方根 要求有变化的内容:要求有变化的内容:(数与代数)(数与代数)20012001年版年版20112011年版年版(5 5)了解二次根式的概念)了解二次根式的概念 (5 5)了解二次根式及最简二次根式的概念)了解二次根式及最简二次根式的概念 (6 6)了解二次根式的加减乘除运算法则)了解二次根式的加减乘

18、除运算法则 (6 6)了解二次根式(根号下仅限于数)的加)了解二次根式(根号下仅限于数)的加减乘除运算法则减乘除运算法则 (7 7)了解整式的概念)了解整式的概念 (7 7)理解整式的概念)理解整式的概念 要求有变化的内容:要求有变化的内容:(数与代数)(数与代数)20012001年版年版20112011年版年版(8 8)其中多项式相乘仅指一次式相乘)其中多项式相乘仅指一次式相乘 (8 8)其中多项式相乘仅指一次式之间以及一次)其中多项式相乘仅指一次式之间以及一次式与二次式相乘式与二次式相乘 (9 9)了解分式的概念)了解分式的概念 (9 9)了解分式与最简分式的概念)了解分式与最简分式的概念

19、 (1010)解简单数字系数的一元二次方程)解简单数字系数的一元二次方程 (1010)能解数字系数的一元二次方程)能解数字系数的一元二次方程 要求有变化的内容:要求有变化的内容:(数与代数)(数与代数)20012001年版年版20112011年版年版(1111)会解简单的一元一次不等式)会解简单的一元一次不等式 (1111)能解数字系数的一元一次不等式)能解数字系数的一元一次不等式 (1212)体会方程是刻画现实世界的一个有效)体会方程是刻画现实世界的一个有效的数学模型的数学模型 (1212)体会方程是刻画现实世界数量关系的有)体会方程是刻画现实世界数量关系的有效模型效模型 (1313)会解简

20、单的二元一次方程组)会解简单的二元一次方程组 (1313)掌握代入消元法和加减消元法,能解)掌握代入消元法和加减消元法,能解二元一次方程组二元一次方程组 要求有变化的内容:要求有变化的内容:(图形与几何)(图形与几何)20012001年版年版20112011年版年版(1 1)知道等角的余角相等、补角相等、对)知道等角的余角相等、补角相等、对顶角相等顶角相等 (1 1)探索并掌握对顶角相等、同角(等角)的)探索并掌握对顶角相等、同角(等角)的余角相等,同角(等角)的补角相等的性质余角相等,同角(等角)的补角相等的性质 (2 2)了解平行四边形、圆是中心对称图形)了解平行四边形、圆是中心对称图形

21、(2 2)探索线段、平行四边形、正多边形、圆)探索线段、平行四边形、正多边形、圆的中心对称性质的中心对称性质 要求有变化的内容:要求有变化的内容:(图形与几何)(图形与几何)20012001年版年版20112011年版年版(3 3)能按要求作出简单平面图形经过一次或两次轴对)能按要求作出简单平面图形经过一次或两次轴对称后的图形,探索简单图形间的轴对称关系,并指出称后的图形,探索简单图形间的轴对称关系,并指出对称轴。对称轴。(3 3)能画出简单平面图形(点,线段,直线,)能画出简单平面图形(点,线段,直线,三角形等)关于给定对称轴的对称图形三角形等)关于给定对称轴的对称图形 (4 4)探索相似图

22、形的性质,知道相似多边形的对应)探索相似图形的性质,知道相似多边形的对应角相等、对应边成比例、面积比等于对应边比的平方角相等、对应边成比例、面积比等于对应边比的平方 (4 4)了解相似多边形和相似比)了解相似多边形和相似比 要求有变化的内容:要求有变化的内容:(统计与概率)(统计与概率)20012001年版年版20112011年版年版(1 1)感受抽样的必要性)感受抽样的必要性 (1 1)体会抽样的必要性)体会抽样的必要性 (2 2)运用列表法、画树状图计算简单事件发)运用列表法、画树状图计算简单事件发生的概率。生的概率。(2 2)能通过列表、画树状图等方法列出简单能通过列表、画树状图等方法列

23、出简单随机事件所有可能的结果,以及指定事件发随机事件所有可能的结果,以及指定事件发生的所有可能结果。生的所有可能结果。7.7.关于课程实施的修改关于课程实施的修改 “实施建议实施建议”由原来按学段表述,改为三个学段由原来按学段表述,改为三个学段整体表述,避免不必要的重复。增加了一些帮助教师整体表述,避免不必要的重复。增加了一些帮助教师理解、澄清困惑的实例。对大部分实例不仅仅呈现了理解、澄清困惑的实例。对大部分实例不仅仅呈现了实例要求本身,而且提出了实例的设计思路及教学过实例要求本身,而且提出了实例的设计思路及教学过程建议,有利于教师理解课程内容、体会数学思想、程建议,有利于教师理解课程内容、体

24、会数学思想、实施教学。将课程目标中的实施教学。将课程目标中的“术语解释术语解释”和课程内容和课程内容及实施建议中的实例统一放在附录中,分别成为附录及实施建议中的实例统一放在附录中,分别成为附录1 1和附录和附录2 2。对实例进行统一编号,便于查找和使用。对实例进行统一编号,便于查找和使用。n数学课标的新变化无论在理论上或是实践数学课标的新变化无论在理论上或是实践上都向我们提出了一些新的、值得探究的上都向我们提出了一些新的、值得探究的课题,需要我们去面对课题,需要我们去面对n课改的理想与课程的现实之间仍有较大反课改的理想与课程的现实之间仍有较大反差,需要我们以教育的智慧去寻找平衡点差,需要我们以

25、教育的智慧去寻找平衡点n课改的路还很长课改的路还很长,它需要的是一种坚守!它需要的是一种坚守!把握变化把握变化 深化课改深化课改什么是数学课堂教什么是数学课堂教 学中最需要做的事?学中最需要做的事?n数学教学活动,特别是课堂教学应激发数学教学活动,特别是课堂教学应激发学学生兴趣生兴趣,调动学生积极性,引发学生的,调动学生积极性,引发学生的数数学思考学思考,鼓励学生的,鼓励学生的创造性思维创造性思维;要注重;要注重培养学生良好的培养学生良好的数学学习习惯数学学习习惯,使学生掌,使学生掌握恰当的握恰当的数学学习方法数学学习方法。改变人才培养模式改变人才培养模式 要从这些方面入手!要从这些方面入手!

26、核心概念有何意义?核心概念有何意义?n首先,首先,标准标准将这些核心概念放在课程内将这些核心概念放在课程内容设计栏目下提出,是想表明,这些概念不容设计栏目下提出,是想表明,这些概念不是设计者超乎于数学课程内容之上外加的,是设计者超乎于数学课程内容之上外加的,而是实实在在蕴涵于具体的课程内容之中的而是实实在在蕴涵于具体的课程内容之中的。从这一意义上看,。从这一意义上看,核心概念往往是一类课核心概念往往是一类课程内容的核心或主线,程内容的核心或主线,它有利于我们体会内它有利于我们体会内容的本质,把握课程内容的线索,抓住教学容的本质,把握课程内容的线索,抓住教学中的关键。中的关键。n第二,第二,这些

27、核心概念都是数学课程的目标点,这些核心概念都是数学课程的目标点,也应该成为数学课堂教学的目标,仅以也应该成为数学课堂教学的目标,仅以“数学数学思考思考”和和“问题解决问题解决”部分的目标设定来看,部分的目标设定来看,标准标准就提出了:就提出了:“建立数感、符号意识和建立数感、符号意识和空间观念,初步形成几何直观和运算能力空间观念,初步形成几何直观和运算能力”;“发展数据分析观念,感受随机现象发展数据分析观念,感受随机现象”;“发发展合情推理和演绎推理能力展合情推理和演绎推理能力”;“增强应用意增强应用意识,提高实践能力识,提高实践能力”;“体验解决问题方法的体验解决问题方法的多样性,发展创新意

28、识多样性,发展创新意识”。这些目标表述几乎。这些目标表述几乎涵盖了所有的核心概念。涵盖了所有的核心概念。核心概念有何意义?核心概念有何意义?n第三,深入一步讲,很多核心概念都体现着第三,深入一步讲,很多核心概念都体现着数学的基本思想数学的基本思想。数学基本思想集中反映为数学基本思想集中反映为数学抽象、数学推理和数学模型思想。数学抽象、数学推理和数学模型思想。n比如,与比如,与“数与代数数与代数”部分内容直接关联的部分内容直接关联的数感、符号意识、运算能力、推理能力和模数感、符号意识、运算能力、推理能力和模型思想等核心概念就不同程度的直接体现了型思想等核心概念就不同程度的直接体现了抽象、推理和模

29、型的基本思想要求。这启示抽象、推理和模型的基本思想要求。这启示我们,核心概念的教学要更关注其数学思想我们,核心概念的教学要更关注其数学思想本质。本质。核心概念有何意义?核心概念有何意义?n第四,从这第四,从这10个名词的名称来看,它们体现个名词的名称来看,它们体现的都是学习主体的都是学习主体学生的特征,涉及的是学生的特征,涉及的是学生在数学学习中学生在数学学习中应该建立和培养的关于数应该建立和培养的关于数学的感悟、观念、意识、思想、能力等学的感悟、观念、意识、思想、能力等,因,因此,可以认为,它们是学生在义务教育阶段此,可以认为,它们是学生在义务教育阶段数学课程中数学课程中最应培养的数学素养,

30、最应培养的数学素养,是促进学是促进学生发展的重要方面。生发展的重要方面。n所以,把握好这些核心概念无论对于教所以,把握好这些核心概念无论对于教师教学和学生学习都是极为重要的。师教学和学生学习都是极为重要的。核心概念有何意义?核心概念有何意义?符号感符号感(Symbol SenseSymbol Sense)为何改为符号意识?为何改为符号意识?n英文单词一样,但改动后中文意义有所英文单词一样,但改动后中文意义有所不同不同n符号感主要的不是潜意识、直觉符号感主要的不是潜意识、直觉n符号感最重要的内涵是运用符号进行数符号感最重要的内涵是运用符号进行数学思考和表达,进行数学活动,这是一学思考和表达,进行

31、数学活动,这是一个个“意识意识”问题,而不是问题,而不是“感感”的问题的问题统计观念统计观念 为何改为数据分析观念?为何改为数据分析观念?原课标中的原课标中的“统计观念统计观念”,强调的是从,强调的是从统计的角度思考问题,认识统计对决策的作统计的角度思考问题,认识统计对决策的作用,能对数据处理的结果进行合理的质疑等用,能对数据处理的结果进行合理的质疑等要求。此次将其改为要求。此次将其改为“数据分析观念数据分析观念”,就,就是希望改变过去这一概念含义较是希望改变过去这一概念含义较“泛泛”,体,体现统计与概率的本质意义不够鲜明的弱点,现统计与概率的本质意义不够鲜明的弱点,而将该部分内容聚焦于而将该

32、部分内容聚焦于“数据分析数据分析”。核心概念之:核心概念之:运算能力运算能力 此次增加的核心概念此次增加的核心概念 运算是数学的重要内容,在义务教育阶运算是数学的重要内容,在义务教育阶段的数学课程的各个学段中,运算都占有很段的数学课程的各个学段中,运算都占有很大的比重。运算能力并非一种单一的、孤立大的比重。运算能力并非一种单一的、孤立的数学能力,而是的数学能力,而是运算技能运算技能与与逻辑思维逻辑思维等的等的有机整合。换言之,运算能力不仅是有机整合。换言之,运算能力不仅是一种数一种数学的操作能力,更是一种数学的思维能力学的操作能力,更是一种数学的思维能力。所谓数学模型,所谓数学模型,就是根据特

33、定的研究目的就是根据特定的研究目的和问题,采用形式化的数学语言,去抽象地和问题,采用形式化的数学语言,去抽象地,概括地表征所研究对象的主要特征、关系,概括地表征所研究对象的主要特征、关系所形成的所形成的 一种数学结构。一种数学结构。在义务教育阶段数学中,用字母、数字及在义务教育阶段数学中,用字母、数字及其他数学符号建立起来的代数式、关系式、其他数学符号建立起来的代数式、关系式、方程、函数、不等式,及各种图表、图形等方程、函数、不等式,及各种图表、图形等都是数学模型。都是数学模型。核心概念之:核心概念之:模型思想模型思想 此次增加的核心概念此次增加的核心概念核心概念之:核心概念之:几何直观几何直

34、观 此次新增的核心概念此次新增的核心概念 顾名思义,几何直观所指有两点:顾名思义,几何直观所指有两点:一一是几何是几何,在这里几何是指图形;,在这里几何是指图形;一是直观一是直观,这里的直观不仅仅是指直接看到的东西(直这里的直观不仅仅是指直接看到的东西(直接看到的是一个层次),更重要的是依托现接看到的是一个层次),更重要的是依托现在看到的东西、以前看到的东西进行思考、在看到的东西、以前看到的东西进行思考、想象,综合起来想象,综合起来几何直观就是依托、利用图几何直观就是依托、利用图形进行数学的思考、想象形进行数学的思考、想象。它在本质上是一。它在本质上是一种通过图形所展开的想象能力。种通过图形所

35、展开的想象能力。它表明:今后数学课程中有两件事需要刻它表明:今后数学课程中有两件事需要刻意去做,即针对较抽象的数学对象的意去做,即针对较抽象的数学对象的“图形图形表示表示”和和“图形分析图形分析”。前者前者指教学中要培指教学中要培养学生通过画图来表达数学问题的习惯,能养学生通过画图来表达数学问题的习惯,能画图时尽量画;画图时尽量画;后者后者指引导学生借助图形将指引导学生借助图形将相对抽象的、复杂的数学关系直观、清晰地相对抽象的、复杂的数学关系直观、清晰地展示出来,通过对图形的分析思考进而寻求展示出来,通过对图形的分析思考进而寻求解决问题的思路。解决问题的思路。核心概念之:核心概念之:几何直观几

36、何直观 此次新增的核心概念此次新增的核心概念n创新意识创新意识的培养是现代数学教育的基本任的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。务,应体现在数学教与学的过程之中。学学生自己发现和提出问题是创新的生自己发现和提出问题是创新的基础基础;独;独立思考、学会思考是创新的立思考、学会思考是创新的核心核心;归纳概;归纳概括得到猜想和规律,并加以验证,是创新括得到猜想和规律,并加以验证,是创新的重要的重要方法方法。创新意识的培养应该从义务创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终。教育阶段做起,贯穿数学教育的始终。核心概念之:核心概念之:创新意识创新意识 此次新增的核心

37、概念此次新增的核心概念 从从基础、核心、方法基础、核心、方法三个方面指明了创新三个方面指明了创新意识的要素。这为我们培养学生创新意识意识的要素。这为我们培养学生创新意识提出了几个基本的切入点和路径,使创新提出了几个基本的切入点和路径,使创新意识的培养落在了比较实在的载体上,即意识的培养落在了比较实在的载体上,即围绕这围绕这三个要素,三个要素,教师应紧紧抓住教师应紧紧抓住“数学数学问题问题”、“学会思考学会思考”、“猜想、验证猜想、验证”这几个点,做足教学中的这几个点,做足教学中的“文章文章”,创新,创新意识培养的目标就有可能得到落实。意识培养的目标就有可能得到落实。核心概念之:核心概念之:创新

38、意识创新意识 此次新增的核心概念此次新增的核心概念何为数学基本思想?何为数学基本思想?n数学基本思想是指对数学及其对象、数学概数学基本思想是指对数学及其对象、数学概念和数学结构以及数学方法的本质性认识念和数学结构以及数学方法的本质性认识n数学思想蕴涵在数学知识形成、发展和应用数学思想蕴涵在数学知识形成、发展和应用的过程中;它制约着学科发展的主线和逻辑的过程中;它制约着学科发展的主线和逻辑架构;是数学知识和方法在更高层次上的抽架构;是数学知识和方法在更高层次上的抽象与概括。如象与概括。如归纳、演绎、抽象、转化、分归纳、演绎、抽象、转化、分类、模型、结构、数形结合、随机类、模型、结构、数形结合、随

39、机等。等。数学活动经验的类型:数学活动经验的类型:n直接的活动经验,间接的活动经验,设计的活动经直接的活动经验,间接的活动经验,设计的活动经验和思考的活动经验验和思考的活动经验。n直接的活动经验是与学生日常生活直接联系的数学直接的活动经验是与学生日常生活直接联系的数学活动中所获得的经验,如购买物品、校园设计等。活动中所获得的经验,如购买物品、校园设计等。n间接的活动经验是学生在教师创设的情景、构建的间接的活动经验是学生在教师创设的情景、构建的模型中所获得的数学经验,如鸡兔同笼、顺水行舟模型中所获得的数学经验,如鸡兔同笼、顺水行舟等。等。n设计的活动经验是学生从教师特意设计的数学活动设计的活动经验是学生从教师特意设计的数学活动中所获得的经验,如随机摸球、地面拼图等。中所获得的经验,如随机摸球、地面拼图等。n思考的活动经验是通过分析、归纳等思考获得的数思考的活动经验是通过分析、归纳等思考获得的数学经验,如预测结果、探究成因等。学经验,如预测结果、探究成因等。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 数学 > 其它资料
版权提示 | 免责声明

1,本文(初中数学教师培训材料讲座新课标呼唤课堂教学新改变课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|