《微积分(第二版)》课件第三节可降阶的二阶微分方程.ppt

上传人(卖家):momomo 文档编号:4918480 上传时间:2023-01-25 格式:PPT 页数:13 大小:389.50KB
下载 相关 举报
《微积分(第二版)》课件第三节可降阶的二阶微分方程.ppt_第1页
第1页 / 共13页
《微积分(第二版)》课件第三节可降阶的二阶微分方程.ppt_第2页
第2页 / 共13页
《微积分(第二版)》课件第三节可降阶的二阶微分方程.ppt_第3页
第3页 / 共13页
《微积分(第二版)》课件第三节可降阶的二阶微分方程.ppt_第4页
第4页 / 共13页
《微积分(第二版)》课件第三节可降阶的二阶微分方程.ppt_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、第三节第三节 可降阶的微分方程可降阶的微分方程一、一、y(n)=f(x)型的微分方程型的微分方程 型的微分方程型的微分方程),(yxfy 二、三、三、型微分方程型微分方程 ),(yyfy 一、型微分方程)()(xfyn 方程特征:方程左侧为未知函数的n 阶导数 方程右侧为变量x 的函数 .)(ny)(xf 方程解法:方程两端直接依次积分 n 次.即原方程)()(xfyn 1)1(d)(Cxxfyn方程两端积分一次,得方程两端再积分一次,得21)2(d)(CCxxfyn方程两端依次积分 n 次,得含有n个任意常数的通解.第三节第三节 可降阶的微分方程可降阶的微分方程.sin2的通解求微分方程xx

2、y例,12cosd)sin2(Cxxxxxy 解次,得对所给方程依次积分三xCxxyd)cos(12,213sin31CxCxx,322142cos121CxCxCxx 3213dsin31CxCxCxxy 方程通解32214cos121CxCxCxxy 方程特征:方程左侧为未知函数的二 阶导数 方程右侧为x 与 (不含y)的函数 .y y 方程解法:方程做变换 将其化为一阶微分方程,求解一阶微分方程可得通解.过程如下:二、型微分方程),(yxfy ),(yxfpy ,),(ddpxfxp 代入原方程,得一阶微分方程.dd ,pxpypy 则(1)做变换(2)求此一阶微分方程,得通解),(1C

3、xp),(1Cxy (3)将 回代得一阶微分方程py (4)求解微分方程),(1Cxy 微分方程 两端积分,得原方程通解),(1Cxy .d),(21CxCxy.e1的通解求微分方程xxyxy例xxpxp e1解 ,代入原方程,得,则设pypy 一阶线性微分方程deee1)d()d(11Cxxpxxxxx deee1lnlnCxxxxx ,)e(de11CxCxxxx由通解公式得,)e(dd 1CxxyxxxCxxCxyxxd)e(d)e(11于是有再积分一次,得原方程的通解为2212e)1(CxCxx).2(e)1(11221CCCxCxx,1:1202 xyyxxy满足初值条件求微分方程例

4、.3 0的特解 xy.12dd2pxxxp 解得方程,代入原方程,则设,ddxpypy 此方程为可分离变量方程方程分离变量xxxppd12d2 两端积分,解得,12ln)1ln(ln Cxp 化简得)1(21xCp .)1(21xCy 将 回代得py ,代入上式,得以3 3100Cpyxx.)1(3 2xy 所以将此方程两端积分,得,3 d)1(3232Cxxxxy.1 120Cyx代入,得再以.133xxy所求特解为三、型微分方程),(yyfy 方程特征:方程左侧为未知函数的二 阶导数 方程右侧为y 与 (不含x)的函数 .y y 方程解法:方程做变换 将其化为一阶微分方程,求解一阶微分方程可得通解.过程如下:),(yyfpy ,),(ddpyfypp 代入原方程,得y 的一阶微分方程yppxyypypydddddd ,则(1)做变换(2)求此一阶微分方程,得通解),(1Cyp),(1Cyy (3)将 回代得一阶微分方程py (4)求解微分方程),(1Cyy 微分方程两端分离变量dxCydy),(1方程两端积分,得通解21),(CxCydy.02的通解求方程 yyy解,dydPpy 则),(ypy 设代入原方程得,02 PdydPPy,0)(PdydPyP即,由0 PdydPy,1yCP 可得.12xCeCy 原方程通解为,1yCdxdy 例

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 大学
版权提示 | 免责声明

1,本文(《微积分(第二版)》课件第三节可降阶的二阶微分方程.ppt)为本站会员(momomo)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|