1、 第8讲 解方程【知识链接】1.概念:(1)等式:表示相等关系的式子叫做等式。(2)方程:含有未知数的等式叫做方程。(3)方程的解:使方程左右两边相等的未知数的值,叫做方程的解。(4)解方程:求方程的解的过程叫做解方程。2.解方程的主要方法:(1)等式基本性质 等式基本性质(一):等式两边都加上或减去同一个数,等式仍然成立。 等式基本性质(二):等式两边都乘一个数或除以一个不为0的数,等式仍然成立。(2)倒推法(四则运算)(3)移项法 移项:方程中的任何一项,可以在改变符号以后,从方程的一边移到另一边。 移项法则:同加小往大移,同减大往小移,一加一减减往加移。【例1】 2x6=24 3x2=2
2、x+3 【练习】 5x-3=7 2x+8=12-22x+5=5x-7 x-2=3x-6【例2】 (2x1)3=15【练习】5x=3(x+0.4) 3x+2=2(x+11) 39x+5=64(x1)6 【例3】 (3x2)=4(3x)【练习】3(2x+5)=5(x+20) 2(5z9)=2(z-1) 0.5(x+2)=2(2-0.5x)【例4】 0.3(x-2)=2+0.7(x-2)【练习】 0.25(2x+4)+11=(x-2)1.5-4 3(3x+4)=(2x-3)2+43 2(5x+2)+5=3(2x-2)+25【例5】 12x-4(2x-3)=36【练习】 9x-6(x+8)=24 8(x+4)-3(x-6)=60 5-(x+2)=3-2(2x-4)【例6】 5=x25 【练习】 2.5=x32 1.25=10x x0.2=5【例7】 12=(x-3)35【练习】 3.5=(x+4) 4 5=75(2x+5) 35(17x-12)=7 【课后巩固】 2(z1)=4z7 364x=8 7z535=(z3)6 3(z2)1=152(z+2)12+5(3z4)=242(z1) 32x+5=46(x1)+23 26(2x5)3=4x11 3x=x+5 2x+18=4x 13+7x=5x+20 5=(11x8)5 25=50(9x-40)7