1、题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂经典练习基础知识过关-2-1.P(5,-4)到x轴的距离是4,到y轴的距离是5.结论:点到横轴的距离=|点的纵坐标|,点到纵轴的距离=|点的横坐标|.2.若x轴上的点P,且OP=3,则点P的坐标为(B )A.(3,0)B.(3,0)或(-3,0)C.(0,3)D.(0,3)或(0,-3)3.如图,已知A(1,4),B(-4,0),C(2,0).ABC的面积是12.第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面
2、积问题基础知识过关重点题型讲解随堂经典练习基础知识过关-3-4.如图,三角形AOB中,A,B两点的坐标分别为(2,4),(6,2),求三角形AOB的面积,及点A到OB的距离.第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂经典练习基础知识过关-4-5.已知A(-4,n),B(2,-4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及AOB的面积.第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂经
3、典练习基础知识过关-5-第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂经典练习基础知识过关-6-6.过ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫ABC的“水平宽”(a),中间的这条直线在ABC内部线段的长度叫ABC的“铅垂高”(h),SABC=ah,(用a,h表示)即三角形面积等于水平宽与铅垂高乘积的一半(语言叙述).第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂经典练习重点题型讲解-7-【例1】如图,在等腰三角形ACB中,AC=BC=5,AB=8,
4、D为底边AB上一动点(不与点A,B重合),DEAC,DFBC,垂足分别为E,F,则DE+DF=.第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂经典练习重点题型讲解-8-答案:连接CD,过C点作底边AB上的高CG,AC=BC=5,AB=8,SABC=SACD+SDCB,ABCG=ACDE+BCDF,AC=BC,83=5(DE+DF)DE+DF=4.8.故答案为:4.8.第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂经典练习重点题型讲解-9-【练习1】如图,在矩形ABCD中,AB=3
5、,BC=4,点P在BC边上运动,连接DP,过点A作AEDP,垂足为E,设DP=x,AE=y,则能反映y与x之间函数关系的大致图象是(C )第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂经典练习重点题型讲解-10-【例2】如图,抛物线y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,P点的横坐标为x,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;(3)在(2)的基础上,连接AE,EC,当E
6、点坐标为多少时,CAE的面积有最大值.第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂经典练习重点题型讲解-11-答案:(1)令y=0,解得x1=-1或x2=3,A(-1,0)B(3,0).将C点的横坐标x=2代入y=x2-2x+3,得y=-3,C(2,-3).直线AC的函数解析式是y=-x-1.(2)设P点的横坐标为x(-1x2),则P、E的坐标分别为P(x,-x-1),E(x,x2-2x-3).第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂经典练习重点题型讲解-12-【练习2】
7、抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求CAB的铅垂高CD及SCAB;(3)在(2)的条件下,是否存在一点P,使SPAB=SCAB,若存在,求出P点的坐标;若不存在,请说明理由.第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂经典练习重点题型讲解-13-解:(1)设抛物线的解析式为y1=a(x-1)2+4,把A(3,0)代入解析式求得a=-1.所以y1=-(x-1)2+4=-x2+2x+3
8、.设直线AB的解析式为y2=kx+b.由y1=-x2+2x+3求得B点的坐标为(0,3).把A(3,0),B(0,3)代入,y2=kx+b中,解得k=-1,b=3,所以y2=-x+3.(2)因为C点坐标为(1,4),所以当x=1时,y1=4,y2=2,所以CD=4-2=2,SCAB=32=3(平方单位).第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂经典练习重点题型讲解-14-(3)假设存在符合条件的点P,设P点的横坐标为x,PAB的铅垂高为h,则h=y1-y2=(-x2+2x+3)-(-x+3)=-x2+3x.第三部分第三部分题型二题
9、型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂经典练习随堂经典练习-15-A组1.如图,在直角坐标系中,抛物线y=x2-3x与经过点B(0,6)的直线相交于x轴上点A(3,0),P为线段AB上一动点(P点横坐标为t,且与点A、B不重合),过P作x轴垂线,交抛物线于Q点,连接OP,OQ,QA.(1)写出直线AB表达式;(2)设四边形POQA的值为S.求S与t的函数关系式,并求S的最大值.第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂经典练习随堂经典练习-16-解:(1)设直线AB解析式为y=kx+b,第三
10、部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂经典练习随堂经典练习-17-B组2.如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点.(1)求该抛物线的解析式;(2)在(1)中的抛物线上的第二象限上是否存在一点P,使PBC的面积最大?若存在,求出点P的坐标及PBC的面积最大值;若不存在,请说明理由.第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂经典练习随堂经典练习-18-第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重
11、点题型讲解随堂经典练习随堂经典练习-19-3.如图,在平面直角坐标系中放置一直角三角形,其顶点为A(0,1),B(2,0),O(0,0),将三角板绕原点O逆时针旋转90,得到ABO.(1)一抛物线经过点A、B、B,求该抛物线的解析式;(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PBAB的面积是ABO面积的4倍?若存在,请求出点P的坐标;若不存在,请说明理由.第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂经典练习随堂经典练习-20-解:(1)ABO是由ABO绕原点O逆时针旋转90得到的,又A(0,1),B(2,0),
12、O(0,0),A(-1,0),B(0,2).设抛物线的解析式为y=ax2+bx+c(a0),满足条件的抛物线的解析式为y=-x2+x+2;(2)P为第一象限内抛物线上的一动点,设P(x,y),则x0,y0,P点坐标满足y=-x2+x+2.连接PB,PO,PB,S四边形PBAB=SBOA+S形PBAB的面积是ABO面积的4倍,则-x2+2x+3=4,即x2-2x+1=0,解之得x=1,此时y=-12+1+2=2,即P(1,2),存在点P(1,2),使四边形PBAB的面积是ABO面积的4倍.第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂经典
13、练习随堂经典练习-21-4.如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-8,0),点N的坐标为(-6,-4).(1)画出直角梯形OMNH绕点O旋转180的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A,点N的对应点为B,点H的对应点为C);(2)求出过A,B,C三点的抛物线的表达式;第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂经典练习随堂经典练习-22-(3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否
14、存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;(4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.解:(1)利用中心对称性质,画出梯形OABC,图略;A,B,C三点与M,N,H分别关于点O中心对称,A(0,4),B(6,4),C(8,0);(2)设过A,B,C三点的抛物线关系式为y=ax2+bx+c,抛物线过点A(0,4),c=4,则抛物线关系式为y=ax2+bx+4,将B(6,4),C(8,0)两点第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂
15、经典练习随堂经典练习-23-(3)OA=4,OC=8,AF=4-m,OE=8-m,S四边形EFGB=S梯形ABCO-SAGF-m=4时,S取最小值,又0m0),则有E(m,-m2+2m+3),F(m,-m+3),EF=-m2+2m+3-(-m+3)=-m2+3m=m(-m+3),PF=-m+3.第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂经典练习随堂经典练习-29-7.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C在坐标轴上,OA=60 cm,OC=80 cm.动点P从点O出发,以5 cm/s的速度沿x轴匀速向点
16、C运动,到达点C即停止.设点P运动的时间为t s.(1)过点P作对角线OB的垂线,垂足为点T.求PT的长y与时间t的函数关系式,并写出自变量t的取值范围;(2)在点P运动过程中,当点O关于直线AP的对称点O恰好落在对角线OB上时,求此时直线AP的函数解析式;(3)探索:以A,P,T三点为顶点的APT的面积能否达到矩形OABC面积的?请说明理由.第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂经典练习随堂经典练习-30-是0t16.第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂经典练
17、习随堂经典练习-31-(2)当O点关于直线AP的对称点O恰好在对角线OB上时,A,T,P三点应在一条直线上(如图2).点P的坐标为(45,0).设直线AP的函数解析式为y=kx+b.将点A(0,60)和点P(45,0)代入解析式,第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂经典练习随堂经典练习-32-构成三角形.故分两种情况:()当0t9时,点T位于AOP的内部.过A点作AEOB,垂足为点E,由AOAB=OBAE可得AE=48.SAPT=SAOP-SATO-S-6t2+54t=1 200,即t2-9t+200=0.此时,(-9)2-412000,所以该方程无实数根.所以,当0t9时,以A,P,T为顶点的APT的面积不能达到矩形OABC面积的 .第三部分第三部分题型二题型二函数思想函数思想图象中的面积问题图象中的面积问题基础知识过关重点题型讲解随堂经典练习随堂经典练习-33-()当9t16时,点T位于AOP的外部.