探索中点四边形(第一课时).ppt

上传人(卖家):仙人指路 文档编号:5409447 上传时间:2023-04-10 格式:PPT 页数:14 大小:1,010.51KB
下载 相关 举报
探索中点四边形(第一课时).ppt_第1页
第1页 / 共14页
探索中点四边形(第一课时).ppt_第2页
第2页 / 共14页
探索中点四边形(第一课时).ppt_第3页
第3页 / 共14页
探索中点四边形(第一课时).ppt_第4页
第4页 / 共14页
探索中点四边形(第一课时).ppt_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、甘肃省陇南市武都区两水中学甘肃省陇南市武都区两水中学 唐小平唐小平华东师大版华东师大版 八年级八年级数学数学下册下册复习回顾1、我们所学过的四边形有哪些?平行四边形有哪些判定方法?2、三角形的中位线有何性质?如图1所示的四边形ABCD是一任意四边形,E、F、G、H分别是边AB、BC、CD、DA的中点,现顺次连结四边形ABCD各边的中点组成一个新四边形的EFGH。我们把四边形EFGH叫做四边形ABCD的中点四边形中点四边形。今天,我们来探索中点四边形的形状。新课讲解图1中四边形EFGH呈什么形状?请说明理由。解:平行四边形。理由:如图2示,连结AC.E、F分别是AB、BC的中点 EF是ABC的中

2、位线.EFAC,且EF=AC.同理GHAC,且GH=AC.EFGH,且EF=GH.四边形EFGH是平行四边形.2121思考:还有没有其他的解法?发现了什么?发现了什么?一般四边形的中点四边一般四边形的中点四边形是平行四边形形是平行四边形.如图4,若四边形ABCD是平行四边形,则其中点四边形EFGH是否仍然是平行四边形?请说明理由。解:平行四边形。理由:如图4示,连结AC.E、F分别是AB、BC的中点 EF是ABC的中位线.EFAC,且EF=AC.同理GHAC,且GH=AC.EFGH,且EF=GH.四边形EFGH是平行四边形2121 如果四边形ABCD分别是矩形(图5)、菱形(图6)、正方形(图

3、7)和等腰梯形(图8),那么与之相对应的中点四边形EFGH是否与原四边形ABCD的形状保持一致?请说明理由.对于图5中的中点四边形EFGH,猜想四边形EFGH是菱形.理由如下:(学生口述)对于图6中的中点四边形EFGH,猜想四边形EFGH是矩形.理由如下:(学生口述)图7中,四边形ABCD的中点四边形EFGH是正方形.图8中,四边形ABCD的中点四边形EFGH是菱形.若原四边形若原四边形ABCD分别为分别为任意四边任意四边形、形、平行四边形平行四边形、矩形(等腰梯形)矩形(等腰梯形)、菱形和正方形菱形和正方形,则与之对应的中点四则与之对应的中点四边形边形EFGH分别为平行四边形分别为平行四边形、平行四平行四边形边形、菱形菱形、矩形和正方形矩形和正方形.课堂练习课堂练习:填空:顺次连结的四边形各边中点所得的四边形是菱形;顺次连结的四边形各边中点所得的四边形是矩形;顺次连结的四边形各边中点所得的四边形是正方形.布置作业:布置作业:见学生学案。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文(探索中点四边形(第一课时).ppt)为本站会员(仙人指路)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|