1、第二章第二章 随机变量及其分布列随机变量及其分布列 2.2.1 条条 件件 概概 率率 某某日你妈妈带你到她的一个朋友家做客,日你妈妈带你到她的一个朋友家做客,闲谈间正巧碰到她的女儿回家,这时主人闲谈间正巧碰到她的女儿回家,这时主人介绍说:介绍说:“这是我的一个女儿,我还有一这是我的一个女儿,我还有一个孩子呢。个孩子呢。”这个家庭中有两个孩子,已这个家庭中有两个孩子,已知其中有一个是女孩,问这时另一个孩子知其中有一个是女孩,问这时另一个孩子也是女孩的概率为多大?也是女孩的概率为多大?问题情境问题问题 这个家庭中有两个孩子,已知其中有一个是女孩,问这这个家庭中有两个孩子,已知其中有一个是女孩,问
2、这时另一个小孩也是女孩的概率为多大?时另一个小孩也是女孩的概率为多大?解解(,),(,),(,),(,)男男男女女男女女(,),(,),(,)A=已 知 一 个 是 女 孩 男女女男女女(,)B 另一个也是女孩女 女1.3所以所求概率为 问题探究问题问题 这个家庭中有两个孩子,这个家庭中有两个孩子,已知老大是女孩,已知老大是女孩,问这时另问这时另一个小孩也是女孩的概率为多大?一个小孩也是女孩的概率为多大?解解(,),(,),(,),(,)男男男女女男女女(,),(,),(,)A=已 知 一 个 是 女 孩 男女女男女女(,)B 另一个也是女孩女 女(,),(,)=已 知 老 大 是 女 孩 女
3、男女女A1.2所以所求概率为 问题探究 思考:思考:三张奖券中只有一张能中奖,现分别三名同学三张奖券中只有一张能中奖,现分别三名同学无放回地抽取,问最后一名同学中奖的概率是否比其无放回地抽取,问最后一名同学中奖的概率是否比其他同学小?他同学小?问题探究知道第一名同学的结果会影响最知道第一名同学的结果会影响最后一名同学中奖的概率吗?后一名同学中奖的概率吗?由古典概型可知,最后一名同学抽到中奖奖券的n(B)概率为n(A),.YYY YYY因为已经知道第一位同学没有抽到中奖奖券,那么所有可能的抽取的情况变为A=12 问题探究(通常适用古典概率模型通常适用古典概率模型)(适用于一般的概率模型适用于一般
4、的概率模型)()(|)?()n BP B An A 问题探究 一般地一般地,设,为两个事件设,为两个事件,且且(A),称称()()()PA BPBAPA为在事件为在事件A发生的条件下,事件发生的条件下,事件B发生的发生的条件概率条件概率 1 1、定义、定义条件概率条件概率 Conditional Probability一般把一般把 P(BA)读作)读作 A 发生的条件下发生的条件下 B 的概率。的概率。概念解析问题问题 这个家庭中有两个孩子,已知其中有一个是女孩,问这这个家庭中有两个孩子,已知其中有一个是女孩,问这时另一个小孩也是女孩的概率为多大?时另一个小孩也是女孩的概率为多大?解解(,),
5、(,),(,),(,)男男男女女男女女(,),(,),(,)A=已 知 一 个 是 女 孩 男女女男女女(,)B 另一个也是女孩女 女1.3所以所求概率为 问题探究 010(1)任何事件的条件概率都在和 之间,即P(B A)1.2(),()BCP BC A 条件概率的加法公式若 和 是两个互斥事件 则()()P B AP C A 条件概率的性质 俄罗斯是世界上人口减少速度最快的国家之俄罗斯是世界上人口减少速度最快的国家之一,近年来每年都减少数十万人。人口危机一,近年来每年都减少数十万人。人口危机已成为俄已成为俄“最尖锐的问题最尖锐的问题”之一,俄政府对之一,俄政府对那些积极生育的家庭进行奖励,
6、并希望以此那些积极生育的家庭进行奖励,并希望以此带动全社会为增加人口做贡献。带动全社会为增加人口做贡献。例题例题1某家庭某家庭已有已有1个女儿的个女儿的条件下条件下,再生一男一,再生一男一女的概率是多少?女的概率是多少?例题解析例题例题2在某次外交谈判中,中外双方都为了自身的利益在某次外交谈判中,中外双方都为了自身的利益而互不相让,这时对方有个外交官提议以抛掷一颗而互不相让,这时对方有个外交官提议以抛掷一颗骰子决定骰子决定,若若已知已知出现点数不超过出现点数不超过3 3的的条件下条件下再出现再出现点数为奇数则按对方的决议处理,否则按中方的决点数为奇数则按对方的决议处理,否则按中方的决议处理,假
7、如你在现场,你会如何抉择?议处理,假如你在现场,你会如何抉择?B=B=出现的点数是奇数出现的点数是奇数 ,设设A=A=出现的点数不超过出现的点数不超过33,只需求事件只需求事件 A A 发生的条件下,发生的条件下,事件事件 B B 的概率即(的概率即(B BA A)()2(|)()3n ABP B An AB5 5A2 21 13 34,64,6解法一解法一(减缩样本空间法)(减缩样本空间法)解解1:例题解析 B=B=出现的点数是奇数出现的点数是奇数 ,设设A=A=出现的点数不超过出现的点数不超过33,只需求事件只需求事件 A A 发生的条件下,发生的条件下,事件事件 B B 的概率即(的概率
8、即(B BA A)B5 5A2 21 13 34,64,6解解2:由条件概率定义得:由条件概率定义得:()(|)()p ABP B Ap A123132解法二解法二(条件概率定义法)(条件概率定义法)例例2在某次外交谈判中,中外双方都为了自身的利益而在某次外交谈判中,中外双方都为了自身的利益而互不相让,这时对方有个外交官提议以抛掷一颗骰互不相让,这时对方有个外交官提议以抛掷一颗骰子决定子决定,若若已知已知出现点数不超过出现点数不超过3 3的的条件下条件下再出现点再出现点数为奇数则按对方的决议处理,否则按中方的决议数为奇数则按对方的决议处理,否则按中方的决议处理,假如你在现场,你会如何抉择?处理
9、,假如你在现场,你会如何抉择?例题例题3在人群流量较大的街上,有一中年人吆喝在人群流量较大的街上,有一中年人吆喝“送钱送钱”,只见他手拿一黑色小布袋,袋中有只见他手拿一黑色小布袋,袋中有2只黑色和只黑色和3只白只白色的乒乓球(其体积、质地完全相同),旁边立着色的乒乓球(其体积、质地完全相同),旁边立着一块小黑板写道:一块小黑板写道:摸球方法:摸球方法:从袋中每次随机摸出从袋中每次随机摸出1个球,现有两种方个球,现有两种方案案(1)若两次都取到黑球若两次都取到黑球,摊主送给摸球者,摊主送给摸球者10元钱;元钱;否则摸球者付给摊主否则摸球者付给摊主5元钱。元钱。(2)若若已知已知第一次取到黑球第一
10、次取到黑球条件下条件下,第二次也取到,第二次也取到 黑球黑球,摊主送给摸球者,摊主送给摸球者10元钱;否则摸球者付给摊元钱;否则摸球者付给摊主主5元钱。元钱。例题解析 1.1.掷两颗均匀骰子掷两颗均匀骰子,已知已知第一颗掷出第一颗掷出6 6点点条件下条件下,问问“掷出点数之和不小于掷出点数之和不小于1010”的概率是多少的概率是多少?()(|)()n ABP A Bn B解解:设设A=掷出点数之和不小于掷出点数之和不小于10,10,B=第一颗掷出第一颗掷出6 6点点 3162小结 跟踪训练2.2.一盒子装有一盒子装有4 4 只产品只产品,其中有其中有3 3 只一等品只一等品,1,1只二等品只二
11、等品.从中取产品两次从中取产品两次,每次任取一只每次任取一只,作不放回抽样作不放回抽样.设事件设事件A为为“第一次取到的是一等品第一次取到的是一等品”,事件事件B 为为“第二次取到第二次取到的是一等品的是一等品”,试求条件概率试求条件概率P(B|A).).解解.4;3,2,1,号为二等品号为二等品为一等品为一等品将产品编号将产品编号则试验的样本空间为则试验的样本空间为号产品号产品第第号号第二次分别取到第第二次分别取到第表示第一次表示第一次以以,),(j、i、ji(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(4,1),(4,2),(4,3),(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),A ),2,3(),1,3(),3,2(),1,2(),3,1(),2,1(AB由条件概率的公式得由条件概率的公式得()()()n ABP B An A 69.32 1.条件概率的定义条件概率的定义.()()()PA BPBAPA2.条件概率的性质条件概率的性质.3.条件概率的计算方法条件概率的计算方法.(1)减缩样本空间法)减缩样本空间法(2)条件概率定义法)条件概率定义法()()()PA BPBAPA 课堂小结 作 业不渴望能够一跃千里,只希望每天能够前进一步。