空间几何体表面积和体积练习题(DOC 9页).doc

上传人(卖家):2023DOC 文档编号:5750667 上传时间:2023-05-06 格式:DOC 页数:11 大小:552.50KB
下载 相关 举报
空间几何体表面积和体积练习题(DOC 9页).doc_第1页
第1页 / 共11页
空间几何体表面积和体积练习题(DOC 9页).doc_第2页
第2页 / 共11页
空间几何体表面积和体积练习题(DOC 9页).doc_第3页
第3页 / 共11页
空间几何体表面积和体积练习题(DOC 9页).doc_第4页
第4页 / 共11页
空间几何体表面积和体积练习题(DOC 9页).doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、一、 知识回顾(1)棱柱、棱锥、棱台的表面积 = 侧面积 + _;(2)圆柱:r为底面半径,l为母线长侧面积为_;表面积为_.圆锥:r为底面半径,l为母线长侧面积为_;表面积为_.圆台:r、r分别为上、下底面半径,l为母线长侧面积为_;表面积为_.(3)柱体体积公式:_;(S为底面积,h为高)锥体体积公式:_;(S为底面积,h为高)台体体积公式:_;483ADCB(S、S分别为上、下底面面积,h为高)二、 例题讲解题1:如图(1)所示,直角梯形ABCD绕着它的底边AB所在的直线旋转一周所得的几何体的表面积是_;体积是_。 图(1)左视图俯视图主视图2题2:若一个正三棱柱的三视图如图(2)所示,

2、求这个正三棱柱的表面积与体积 图(2) 题3:如图(3)所示,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且,均为正三角形,EF/AB,EF=2,则该多面体的体积为( )A B C DEABDCF 图(3)1、若圆柱的侧面积展开图是长为6cm,宽为4cm的矩形,则该圆柱的体积为CBADC1B1EA1D12、如图(4),在正方体中,棱长为2,E为的中点,则三棱锥的体积是_. 图(4)3、已知某几何体的俯视图是如图(5)所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形 (1)求该几何体的体积V; (2)求该几

3、何体的侧面积S。图(5)(选做题)4、如图(6),一个圆锥的底面半径为2cm,高为6cm,在其中有一个高为xcm的内接圆柱。(1)试用x表示圆柱的侧面积;(2)当x为何值时,圆柱的侧面积最大?一、选择题(每小题5分,共计60分。请把选择答案填在答题卡上。)1以三棱锥各面重心为顶点,得到一个新三棱锥,它的表面积是原三棱锥表面积的A. B. C. D.2正六棱锥底面边长为a,体积为,则侧棱与底面所成的角等于A. B. C. D.3有棱长为6的正四面体S-ABC,分别在棱SA,SB,SC上,且S=2,S=3,S=4,则截面将此正四面体分成的两部分体积之比为 A. B. C. D.4.长方体的全面积是

4、11,十二条棱长的和是24,则它的一条对角线长是A. B. C. 5 D.6 5.圆锥的全面积是侧面积的2倍,侧面展开图的圆心角为,则角的取值范围是A B C D6. 正四棱台的上、下底面边长分别是方程的两根,其侧面积等于两底面积的和,则其斜高与高分别为A与2 B.2与 C.5与4 D.2与37.已知正四面体A-BCD的表面积为S,其四个面的中心分别为E、F、G、H,设四面体E-FGH的表面积为T,则等于 A B. C. D.8. 三个两两垂直的平面,它们的三条交线交于一点O,点P到三个平面的距离比为123,PO=2,则P到这三个平面的距离分别是A1,2,3 B2,4,6 C1,4,6 D3,

5、6,9 9.把直径分别为的三个铁球熔成一个大铁球,这个大铁球的半径是A B. C. D.9. 如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且均为正三角形,EFAB,EF=2,则该多面体的体积为A. B. C.D.10如图,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)球心O,且与BC,DC分别交于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥ABEFD与三棱锥AEFC的表面积分别是,则必有 A.S1S2 C. S1=S2 D.的大小关系不能确定11.三角形ABC中,AB=,BC=4,现将三角形ABC绕BC旋转一周,所得简单组合体的体积为A B.

6、 C.12 D. 12.棱台的上、下底面面积分别为4和9,则这个棱台的高和截得棱台的原棱锥的高的比是 A B. C. D.题号123456789101112答案CBBCDAABBACCB二、填空题:请把答案填在题中横线上(每小题5分,共20分).13. 一个四面体的所有棱长都为,四个顶点在同一个球面上,则此球的表面积为 3.14.已知底面半径为的圆柱被一个平面所截,剩下部分母线长的最大值为,最小值为,那么这个圆柱被截后剩下部分的体积是.15. (江西卷)在直三棱柱ABCA1B1C1中,底面为直角三角形,ACB90,AC6,BCCC1,P是BC1上一动点,则CPPA1的最小值是.16.圆柱的轴截

7、面的对角线长为定值,为使圆柱侧面积最大,轴截面对角线与底面所成的角为 450 .三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共4个大题,共20分).17.圆锥的底面半径为 ,高为12,当它的内接圆柱的底面半径为何值时,圆锥的内接圆柱全面积有最大值?最大值是多少?当r=30/7cm时,S的最大值是18如图,已知正三棱柱ABCA1B1C1的侧面对角线A1B与侧面ACC1A1成45角,AB=4,求棱柱的侧面积.棱柱的侧面积为24练习11 空间几何体的表面积与体积A组1一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ). (A) (B) (C) (D)2在棱长为 1

8、的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去与8个顶点相关的8个三棱锥后 ,剩下的几何体的体积是( ). (A) (B) (C) (D)3一个直棱柱(侧棱垂直于底面的棱柱)的底面是菱形,对角线长分别是6cm和8cm,高是5cm,则这个直棱柱的全面积是 。4已知两个母线长相等的圆锥的侧面展开图恰能拼成一个圆,且它们的侧面积之比为1:2,则它们的高之比为 。5已知三棱锥的三条侧棱两两互相垂直,且长度分别为1cm,2cm,3cm,则此棱锥的体积_。6矩形两邻边的长为a、b,当它分别绕边a、b 旋转一周时, 所形成的几何体的体积之比为 。7球面上有三点,其中任意两点间的球面距离都等于

9、大圆周长的,经过这三点的小圆周长为4,则这个球的表面积为 。B组1四面体 ABCD 四个面的重心分别为E、F、G、H,则四面体EFGH 的表面积与四面体ABCD 的表面积的比值是 。2半径为R的半球,一正方体的四个顶点在半球的底面上,另四个顶点在半球的球面上,则该正方体的表面积是 。3如图,一个棱锥SBCD的侧面积是Q,在高SO上取一点A,使SA=SO,过点A作平行于底面的截面得一棱台,求这个棱台的侧面积.4如图,在四棱锥PABCD中,底面ABCD是正方形,边长AB=a,且PD=a,PA=PC=a,若在这个四棱锥内放一个球,求球的最大半径. 练习七参考答案A组 1答案:A解:设展开图的正方形边

10、长为a,圆柱的底面半径为r,则2r=a,底面圆的面积是,于是全面积与侧面积的比是,选A.2答案:D解:正方体的体积为1,过共顶点的三条棱中点的平面截该正方体截得的三棱锥的体积是,于是8个三棱锥的体积是,剩余部分的体积是,选D.3答案:148 cm2解:底面菱形中,对角线长分别是6cm 和8cm,所以底面边长是5cm,侧面面积是455=100cm2,两个底面面积是48cm2,所以棱柱的全面积是148cm2.4答案:2:解:设圆柱的母线长为l,因为两个圆锥的侧面展开图恰能拼成一个圆,且它们的侧面积之比为1:2,所以它们的展开图即扇形的圆心角分别是和,由圆锥侧面展开图扇形的圆心角的计算公式,得,所以

11、它们的高的比是.5答案:1cm3解:转换一个角度来认识这个三棱锥,即把它的两条侧棱(如长度为1cm,2cm的两条)确定的侧面看作底面,另一条侧棱作为高,则此三棱锥的底面面积是1,高为3, 则它的体积是13=1cm3.6答案:解:矩形绕a边旋转,所得几何体的体积是V1=b2a,矩形绕b边旋转,所得几何体的体积是V2=a2b,所以两个几何体的体积的比是.7答案:48解:小圆周长为4,所以小圆的半径为2,又这三点A、B、C之间距离相等,所以每两点间的距离是AB=BC=AC=2,又A、B之间的大圆劣弧长等于大圆周长的,所以A、B在大圆中的圆心角是60,所以大圆的半径R=2,于是球的表面积是4R2=48

12、.B组 1答案:1:9解:如图,不难看出四面体EFGH与四面体ABCD是相似的。所以关键是求出它们的相似比,连接AF、AG并延长与BC、CD相交于M、N,由于F、G分别是三角形的重心,所以M、N分别是BC、CD的中点,且AF:AM=AG:AN=2:3,所以FG:MN=2:3,又MN:BD=1:2,所以FG:BD=1:3,即两个四面体的相似比是1:3,所以两个四面体的表面积的比是1:9.2答案: 解:如图,过正方体的对角面AC1作正方体和半球的截面。则OC1=R,CC1=a,OC=a,所以,得a2=R2,所以正方体的表面积是6a2=4R2.3解:棱锥SBCD的截面为BCD,过S 作SFBC,垂足为F,延长SF交BC于点E,连结AF和OE, 平面BCD/平面BCD,平面BCD平面SOE=AF,平面BCD平面SOE=OE, AF/OE,于是,即,同理可得, , S棱锥SBCD=Q, S棱台侧=Q.4解:设放入的球的半径为R,球心为S,当且仅当球与四棱锥的各个面都相切时,球的半径最大,连结SA、SB、SC、SD、SP,则把此四棱锥分割成四个三棱锥和一个四棱锥,这些小棱锥的高均为R,底面为原四棱锥的侧面或底面.由体积关系,得 又VPABCD=S正方形ABCDPD=a3, ,解得R=,故所放入的球的最大半径为.11 / 11

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文(空间几何体表面积和体积练习题(DOC 9页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|